首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many chitosan biological activities depend on the interaction with biomembranes, but so far it has not been possible to obtain molecular-level evidence of chitosan action. In this article, we employ Langmuir phospholipid monolayers as cell membrane models and show that chitosan is able to remove beta-lactoglobulin (BLG) from negatively charged dimyristoyl phosphatidic acid (DMPA) and dipalmitoyl phosphatidyl glycerol (DPPG). This was shown with surface pressure isotherms and elasticity and PM-IRRAS measurements in the Langmuir monolayers, in addition to quartz crystal microbalance and fluorescence spectroscopy measurements for Langmuir-Blodgett (LB) films transferred onto solid substrates. Some specificity was noted in the removal action because chitosan was unable to remove BLG incorporated into neutral dipalmitoyl phosphatidyl choline (DPPC) and cholesterol monolayers and had no effect on horseradish peroxidase and urease interacting with DMPA. An obvious biological implication of these findings is to offer reasons that chitosan can remove BLG from lipophilic environments, as reported in the recent literature.  相似文献   

2.
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.  相似文献   

3.
对不同组分的Ru(dpphen)2+3[简称Ru(Ⅱ)]与花生酸(AA)在纯水亚相上的混合单分子膜的相容性、分子间相互作用以及凝聚单分子膜的结构进行了研究. 成功地将这种功能单体分子膜转移到固体载片上,制备成混合LB膜. 紫外-可见光谱、发射光谱及小角X光衍射表明这种混合LB膜是一种稳定、均一、具有良好的层状结构, 并且在可见光范围内具有很强的吸收及发射峰的功能膜.  相似文献   

4.
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. On the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein.  相似文献   

5.
This paper reports the fabrication and characterization of Langmuir and Langmuir-Blodgett (LB) films incorporating an oligo(phenylene-ethynylene) (OPE) derivative, namely, 4-[4-(4-hexyloxyphenylethynyl)-phenylethynyl]-benzoic acid (HBPEB). Conditions appropriate for deposition of monolayers of HBPEB at the air-water interface have been established and the resulting Langmuir films characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and ultraviolet reflection spectroscopy. The Langmuir films are readily transferred onto solid substrates, and one-layer LB films transferred at several surface pressures onto mica substrates have been analyzed by means of atomic force microscopy, from which it can be concluded that 14 mN/m is an optimum surface pressure of transference, giving well-ordered homogeneous films without three-dimensional defects and a low surface roughness. The optical and emissive properties of the LB films have been determined with significant blue-shifted absorption spectra indicating formation of two-dimensional H aggregates and a Stokes shift illustrating the effects of the solid-like environment on the molecular chromophore.  相似文献   

6.
Langmuir and Langmuir-Blodgett monolayers of N-(4-octadecyloxy-2-hydroxybenzylidene) derivatives of glycine, tyrosine, and phenylalanine were studied using pi-A isotherms and photoelastic modulated FTIR (PEM-FTIR). Based on compression modulus and interaction parameters, mixed monolayers of these compounds with stearylamine (SAM) showed well-organized monolayers compared to mixed systems with stearic acid (SA) and stearyl alcohol (SAL). The pure amphiphiles exhibited fairly well-ordered packing in the films, and in the mixtures, the ordering increased and showed a triclinic packing arrangement. For the phenylalanine amphiphile the packing showed slight disorder compared to the other two compounds. Surface properties of the LB films of these compounds on solid substrates were analyzed using static and dynamic contact angles of a series of liquids. The surface tension of coated substrates reflected clearly the highly acidic character. Fluidlike monolayers having a molecularly rough surface indicated high wettability for n-alkanes. In contrast, the monolayer containing well-ordered, well-packed alkyl chains indicated low wettability and small hysteresis.  相似文献   

7.
A set of covalently linked phenyl-amidophenyl-substituted porphyrin amphiphiles with n-C15H31 tails have been synthesized and completely characterized. These amphiphiles form good Langmuir-Blodgett (LB) films at the air/water interface. Mean molecular areas for the series were measured from the isotherms and found to increase as the number of aliphatic chains increased from one to four. No influence of the subphase pH was observed on the isotherms. LB films can be transferred successfully onto different solid surfaces. The LB films were characterized using tapping mode atomic force microscopy (AFM). Bis-, tris-, and tetra-substituted porphyrins were found to be fairly good film-forming amphiphiles, whereas irregular aggregates were seen in the case of the monosubstituted porphyrin amphiphile. Multilayers were also formed with tetra-substituted amphiphiles on mica. Detailed AFM studies of tetra-substituted amphiphiles have been carried out to investigate the effect of preparation procedure and solid substrates on film formation and transfer. The absorption and fluorescence spectra for the amphiphiles in solution and LB films deposited onto mica and glass were recorded, which demonstrated the successful transfer of LB films onto the substrates and provided more information about the arrangement of porphyrin molecules within the LB films. For comparison, self-assembled monolayers (SAMs) and the cast thin films of the amphiphiles were prepared and characterized.  相似文献   

8.
In this work, we present a methodology for choosing the best experimental conditions for transferring protein Langmuir films onto solid substrates. As an example of applying the proposed methodology, we used monolayers of the protein bovine serum albumin, which is a very stable protein and is of great interest in the development of immunosensors. Langmuir-Blodgett (LB) films of this protein, on different solid substrates, were obtained and characterized as a function of pH, surface pressure, temperature, and contact angle. The compressibility modulus, the spreading entropy, and the fraction of desorbed protein sections were used as control parameters to find these conditions. A careful analysis of these parameters shows that there is a window on the values of these experimental parameters in which the LB films are best formed. Our methodology can be applied to other biomacromolecules to find the best conditions to form LB films from isotherm measurements.  相似文献   

9.
The interaction between chitosan and Langmuir and Langmuir-Blodgett (LB) films of dimyristoyl phosphatidic acid (DMPA) is investigated, with the films serving as simplified cell membrane models. At the air-water interface, chitosan modulates the structural properties of DMPA monolayers, causing expansion and decreasing the monolayer elasticity. As the surface pressure increased, some chitosan molecules remained at the interface, but others were expelled. Chitosan could be transferred onto solid supports alongside DMPA using the LB technique, as confirmed by infrared spectroscopy and quartz crystal microbalance measurements. The analysis of sum-frequency vibration spectroscopy data for the LB films combined with surface potential measurements for the monolayers pointed to chitosan inducing the ordering of the DMPA alkyl chains. Furthermore, the morphology of DMPA LB films, studied with atomic force microscopy, was affected significantly by the incorporation of chitosan, with the mixed chitosan-DMPA films displaying considerably higher thickness and roughness, in addition to chitosan aggregates. Because chitosan affected DMPA films even at pressures characteristic of cell membranes, we believe this study may help elucidate the role of chitosan in biological systems.  相似文献   

10.
We have investigated the self-assembling properties of the class I hydrophobin Vmh2 isolated from the fungus Pleurotus ostreatus. Five different hydrophobin self assembled samples including monolayers, bilayers, and rodlets have been prepared by Langmuir technique and studied at the nanoscale. Local wettability and visco-elasticity of the different hydrophobins samples were obtained from atomic force spectroscopy experiments in dynamic mode performed at different, controlled relative humidity (RH) values. It was found that hydrophobins assembled either in rodlets or in bilayer films, display similar hydropathicity and viscoelasticity in contrast to the case of monolayers, whose hydropathicity and viscoelasticity depend on the adopted preparation method (Langmuir-Blodgett or Langmuir-Schaeffer). The comparison with monolayers properties evidences a rearrangement of the bilayers adsorbed onto solid substrates. It is shown that this rearrangement leads to the formation of a stable hydrophobic film, and that the rodlets structure consists in fragments of restructured proteins bilayers. Our results support the hypothesis that the observed variations in the viscoelastic properties could be ascribed to the localization of the large flexible loop, typical of Class I hydrophobins which appears free at the air interface for LB monolayers but not for the other samples. These findings should now serve future developments and applications of hydrophobin films beyond the archetypal monolayer.  相似文献   

11.
Spectroscopic characterization and fabrication of Langmuir and Langmuir-Blodgett (LB) films of an azopolymer-pyridine (PAzPy) are reported. UV-visible absorption and fluorescence spectra, Fourier transform infrared (FTIR) spectra, and Raman spectra were recorded. The vibrational assignment of the observed spectra is supported by a complete geometry optimization, followed by vibrational frequency and intensity computations of both the trans and cis forms of the monomer (AzPy) using density functional theory at the B3LYP 6-31G(d,p) level of theory. Langmuir monolayers of the polymer (PAzPy) were formed at the water-air interface, and LB films of high quality were formed onto solid substrates. The polymer LB films were investigated by surface-enhanced Raman scattering.  相似文献   

12.
The search for optimized architectures, such as thin films, for the production of biosensors has been challenged in recent decades, and thus, the understanding of molecular interactions that occur at interfaces is essential to improve the construction of nanostructured devices. In this study, we investigated the possibility of using carbon nanotubes in hybrid Langmuir-Blodgett (LB) films of lipids and urease to improve the catalytic performance of the immobilized enzyme. The molecular interactions were first investigated at the air-water interface with the enzyme adsorbed from the aqueous subphase onto Langmuir monolayers of dimyristoylphosphatidic acid (DMPA). The transfer to solid supports as LB films and the subsequent incorporation of carbon nanotubes in the hybrid film permitted us to evaluate how these nanomaterials changed the physical properties of the ultrathin film. Colorimetric measurments indicated that the presence of nanotubes preserved and enhanced the enzyme activity of the film, even after 1 month. These results show that the use of such hybrid films is promising for the development of biosensors with an optimized performance.  相似文献   

13.
The synthesis, spectroscopic characterization and surface-enhanced spectroscopy of a new electro active organic material bis (benzimidazo) thioperylene (Monothio BZP) are reported. Langmuir monolayers of Monothio BZP were successfully formed on water subphase and characterized by the pi-A surface-pressure area isotherm. Langmuir-Blodgett (LB) monomolecular layers of Monothio BZP were fabricated onto glass substrates and onto silver island films for surface-enhanced spectroscopic studies. The results of surface-enhanced resonance Raman scattering (SERRS), SERRS imaging and surface-enhanced fluorescence (SEF) studies for Monothio BZP LB monolayers are reported. Raman imaging (global imaging and point-by-point mapping) of the SERRS signal for a single monomolecular layer on silver islands were obtained using the 514.5 nm laser line. The SERRS imaging permits a visualization of the variation of the SERRS intensity across of the rough metal surface. The SEF was recorded for the excimer emission of aggregates in the LB film. The distance dependence and the enhancement factor of SEF were determined using fatty acid spacing layers. A temperature dependence study of the LB monolayer SERRS and SEF spectra was carried out between -190 degrees and + 200 degrees C confirming the thermal stability of the LB monolayer on silver. The specificity and the sensitivity of SERRS signal on metal island films was probed using mixed LB films with 0.01% molecular ratio of Monothio BZP in Arachidic Acid (AA). The micro-Raman SERRS spectra from ca. 10(-3) attomole of the dye were recorded.  相似文献   

14.
Langmuir-Blodgett (LB) films of monodisperse iron oxide nanoparticles have been successfully deposited onto patterned poly(dimethylsiloxane) surfaces. These patterned LB films of iron oxide nanoparticles were transferred onto solid substrates using micro contact printing.  相似文献   

15.
Mixed monolayers of Schiff-base complex Cu(SBC(18))(2) with an octadecyl hydrocarbon chain and Calix[4]arene without a long alkyl chain at an air/water interface were studied in ultrapure water at different temperatures. Interface behavior and thermodynamic estimation of the mixed monolayer indicate that a strong intermolecular interaction exists between the mixed components (Cu(SBC(18))(2) and calix[4]arene) and the two-dimensional miscibility decreases with the molar fraction of Cu(SBC(18))(2). It is noticeable that the calix[4]arene monolayer can be transferred successfully onto solid substrates due to the introduction of Cu(SBC(18))(2). FTIR transmission and UV-Vis absorption spectra of mixed LB films provide further evidence of molecular interaction between the headgroups. Copyright 2001 Academic Press.  相似文献   

16.
《Polyhedron》2007,26(9-11):1871-1875
Magnetic Langmuir–Blodgett films of ferritin have been prepared by using the adsorption properties of a 1/4 mixed monolayer of eicosylamine (EA) and methyl stearate (SME). BAM images show that a more homogeneous distribution of ferritin at the air–water interface is achieved by using this mixture of surfactants instead of the DODA/SME mixed matrix of a previous work. Transfer of the monolayer onto different substrates allowed the preparation of multilayer LB films. Infrared and UV–Vis spectroscopies indicate that ferritin molecules are incorporated within the LB films. Furthermore, UV–Vis spectroscopy measurements reveal that the amount of ferritin incorporated into these LB film has been increased with respect to that in the DODA/SME LB films. Finally magnetic measurements confirm that the superparamagnetic properties of this molecule are preserved in the LB films.  相似文献   

17.
Phase separation and interactions in mixed monolayers of dipalmitoylphosphatidylglycerol (DPPG) with the rhodamine B end-labeled double-hydrophilic block copolymer (DHBC), poly(N,N-dimethylacrylamide)-block-poly(N,N-diethylacrylamide) (RhB-PDMA(207)-b-PDEA(177)), was studied at the air-water interface. Surface pressure versus area isotherms indicate that both components behave almost independently. Brewster angle microscopy (BAM) images show a random distribution of liquid condensed (LC) domains of DPPG in an apparent homogeneous matrix of DHBC, excluding the macroscopic phase separation. The laser scanning confocal fluorescence microscopy (LSCFM) of the rhodamine dye at the end of the PDMA chain showed how the DHBC is distributed in Langmuir-Blodgett (LB) mixed monolayers. The high spatial resolution of atomic force microscopy (AFM) combined with the LCSFM images indicates that DHBC incorporates in the expanded phase of DPPG to form mixed domains, being excluded from the condensed regions. Upon compression, nanosized LC domains of DPPG nucleate inside the mixed domains corralled in the nanopatterning of pure DHBC. The negatively charged polar group of DPPG inhibits rhodamine aggregation, while the long polymer chains promote the formation of corralled nanodomains of DPPG in two dimensions.  相似文献   

18.
Magnetic Langmuir-Blodgett films of four ferritin derivatives with different iron contents containing 4220, 3062, 2200, and 1200 iron atoms, respectively, have been prepared by using the adsorption properties of a 6/1 mixed monolayer of methyl stearate (SME) and dioctadecyldimethylammonium bromide (DODA). The molecular organization of the mixed SME/DODA monolayer is strongly affected by the presence of the water-soluble protein in the subphase as shown by pi-A isotherms, BAM images, and imaging ellipsometry at the water-air interface. BAM images reveal the heterogeneity of this mixed monolayer at the air-water interface. We propose that the ferritin is located under the mixed matrix in those regions where the reflectivity is higher whereas the dark regions correspond to the matrix. Ellipsometric angle measurements performed in zones of different brightness of the mixed monolayer confirm such a heterogeneous distribution of the protein under the lipid matrix. Transfer of the monolayer onto different substrates allowed the preparation of multilayer LB films of ferritin. Both infrared and UV-vis spectroscopy indicate that ferritin molecules are incorporated within the LB films. AFM measurements show that the heterogeneous distribution of the ferritin at the water-air interface is maintained when it is transferred onto solid substrates. Magnetic measurements show that the superparamagnetic properties of these molecules are preserved. Thus, marked hysteresis loops of magnetization are obtained below 20 K with coercive fields that depend on the number of iron atoms of the ferritin derivative.  相似文献   

19.
We investigated Langmuir-Blodgett(LB) films built from the mixture of an amphiphilic push-pull ferrocene derivative(P) and behenic acid. Langmuir films of P diluted by behenic acid exhibit a very good cohesion, and the mixed films can easily be transferred onto solid substrates. Linear dichroism UV-visible and IR spectroscopy measurements of the mixed LB multilayers confirm that the molecules(P) are oriented to the substrate. The nonlinear optical experiments on the mixed monolayer deposited on the CaF2 slide showed that P displays efficient optical second harmonic generation(SHG) with a molecular hyperpolarizability (β)h, high as 6.0×10-29e. s. u..  相似文献   

20.
The miscibility, mechanical and morphological properties of mixed Langmuir and Langmuir-Blodgett monolayers prepared from the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and the perfluorinated fatty acid perfluorooctadecanoic acid have been studied as a function of film composition and subphase salinity. It was demonstrated here, for the first time, that the extent of surfactant miscibility in mixed phospholipid-perfluoroacid monolayers, and hence the resulting mechanical properties of the monolayer film, can be controlled by altering the concentration of sodium ions in the underlying subphase. Elevated Na(+) concentrations resulted in lower net attractive interactions between film components, likely through specific ion adsorption to the negatively-charged perfluoroacid, along with decreased film elasticities. These results differ significantly from conventional fatty-acid-carboxylate monolayer systems in which film cohesion is typically enhanced through adsorption of cations to surfactant headgroups. Atomic force microscope images of films deposited onto solid mica substrates revealed that the films deposited from pure water formed multimolecular aggregates of surfactant, which could be attributed to the highly cohesive nature of the films, but the use of salt in the subphase diminished aggregate formation and resulted in the production of homogeneous monolayer films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号