首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
赵卫东 《计算数学》2015,37(4):337-373
1990年,Pardoux和Peng(彭实戈)解决了非线性倒向随机微分方程(backward stochastic differential equation,BSDE)解的存在唯一性问题,从而建立了正倒向随机微分方程组(forward backward stochastic differential equations,FBSDEs)的理论基础;之后,正倒向随机微分方程组得到了广泛研究,并被应用于众多研究领域中,如随机最优控制、偏微分方程、金融数学、风险度量、非线性期望等.近年来,正倒向随机微分方程组的数值求解研究获得了越来越多的关注,本文旨在基于正倒向随机微分方程组的特性,介绍正倒向随机微分方程组的主要数值求解方法.我们将重点介绍讨论求解FBSDEs的积分离散法和微分近似法,包括一步法和多步法,以及相应的数值分析和理论分析结果.微分近似法能构造出求解全耦合FBSDEs的高效高精度并行数值方法,并且该方法采用最简单的Euler方法求解正向随机微分方程,极大地简化了问题求解的复杂度.文章最后,我们尝试提出关于FBSDEs数值求解研究面临的一些亟待解决和具有挑战性的问题.  相似文献   

2.
Upon a set of backward orthogonal polynomials, we propose a novel multi-step numerical scheme for solving the decoupled forward-backward stochastic differential equations (FBSDEs). Under Lipschtiz conditions on the coefficients of the FBSDEs, we first get a general error estimate result which implies zero-stability of the proposed scheme, and then we further prove that the convergence rate of the scheme can be of high order for Markovian FBSDEs. Some numerical experiments are presented to demonstrate the accuracy of the proposed multi-step scheme and to numerically verify the theoretical results.  相似文献   

3.
In this paper, we first discuss the solvability of coupled forward–backward stochastic differential equations (FBSDEs, for short) with random terminal time. We prove the existence and uniqueness of adapted solution to such FBSDEs under some natural assumptions. The method of proof adopted is to construct a contraction mapping related to the solutions of a sequence of backward SDEs. Our monotonicity-type assumptions are different from those in Hu and Peng (1995) [4], Peng and Shi (2000) [11], and so on. As a corollary of our main result, the solvability of FBSDEs with a finite time horizon is discussed. Finally, the existence and uniqueness theorem of the solution to FBSDEs with a finite time horizon is applied to price special European-type options for a large investor.  相似文献   

4.
We construct a non-standard finite difference numerical scheme to approximate stochastic differential equations (SDEs) using the idea of weighed step introduced by R.E. Mickens. We prove the strong convergence of our scheme under locally Lipschitz conditions of a SDE and linear growth condition. We prove the preservation of domain invariance by our scheme under a minimal condition depending on a discretization parameter and unconditionally for the expectation of the approximate solution. The results are illustrated through the geometric Brownian motion. The new scheme shows a greater behaviour compared with the Euler–Maruyama scheme and balanced implicit methods which are widely used in the literature and applications.  相似文献   

5.
In this article we consider iterative operator-splitting methods for nonlinear differential equations with respect to their eigenvalues. The main focus of the proposed idea is the fixed-point iterative scheme that linearizes our underlying equations. On the basis of the approximated eigenvalues of such linearized systems we choose the order of the operators for our iterative splitting scheme. The convergence properties of such a mixed method are studied and demonstrated. We confirm with numerical applications the effectiveness of the proposed scheme in comparison with the standard operator-splitting methods by providing improved results and convergence rates. We apply our results to deposition processes.  相似文献   

6.
In this paper, we study a class of Hilbert space-valued forward-backward stochastic differential equations (FBSDEs) with bounded random terminal times; more precisely, the FBSDEs are driven by a cylindrical Brownian motion on a separable Hilbert space and a Poisson random measure. In the case where the coefficients are continuous but not Lipschitz continuous, we prove the existence and uniqueness of adapted solutions to such FBSDEs under assumptions of weak monotonicity and linear growth on the coefficients. Existence is shown by applying a finite-dimensional approximation technique and the weak convergence theory. We also use these results to solve some special types of optimal stochastic control problems.  相似文献   

7.
This work is concerned with numerical schemes for stochastic optimal control problems (SOCPs) by means of forward backward stochastic differential equations (FBSDEs). We first convert the stochastic optimal control problem into an equivalent stochastic optimality system of FBSDEs. Then we design an efficient second order FBSDE solver and an quasi-Newton type optimization solver for the resulting system. It is noticed that our approach admits the second order rate of convergence even when the state equation is approximated by the Euler scheme. Several numerical examples are presented to illustrate the effectiveness and the accuracy of the proposed numerical schemes.  相似文献   

8.
A convergence theorem for the continuous weak approximation of the solution of stochastic differential equations (SDEs) by general one-step methods is proved, which is an extension of a theorem due to Milstein. As an application, uniform second order conditions for a class of continuous stochastic Runge–Kutta methods containing the continuous extension of the second order stochastic Runge–Kutta scheme due to Platen are derived. Further, some coefficients for optimal continuous schemes applicable to Itô SDEs with respect to a multi–dimensional Wiener process are presented.  相似文献   

9.
We consider high-order compact (HOC) schemes for quasilinear parabolic partial differential equations to discretise the Black–Scholes PDE for the numerical pricing of European and American options. We show that for the heat equation with smooth initial conditions, the HOC schemes attain clear fourth-order convergence but fail if non-smooth payoff conditions are used. To restore the fourth-order convergence, we use a grid stretching that concentrates grid nodes at the strike price for European options. For an American option, an efficient procedure is also described to compute the option price, Greeks and the optimal exercise curve. Comparisons with a fourth-order non-compact scheme are also done. However, fourth-order convergence is not experienced with this strategy. To improve the convergence rate for American options, we discuss the use of a front-fixing transformation with the HOC scheme. We also show that the HOC scheme with grid stretching along the asset price dimension gives accurate numerical solutions for European options under stochastic volatility.  相似文献   

10.
Recently, numerical solutions of stochastic differential equations have received a great deal of attention. Numerical approximation schemes are invaluable tools for exploring their properties. In this paper, we introduce a class of stochastic age-dependent (vintage) capital system with Poisson jumps. We also give the discrete approximate solution with an implicit Euler scheme in time discretization. Using Gronwall’s lemma and Barkholder-Davis-Gundy’s inequality, some criteria are obtained for the exponential stability of numerical solutions to the stochastic age-dependent capital system with Poisson jumps. It is proved that the numerical approximation solutions converge to the analytic solutions of the equations under the given conditions, where information on the order of approximation is provided. These error bounds imply strong convergence as the timestep tends to zero. A numerical example is used to illustrate the theoretical results.  相似文献   

11.
We study the approximation of stochastic differential equations on domains. For this, we introduce modified Itô–Taylor schemes, which preserve approximately the boundary domain of the equation under consideration. Assuming the existence of a unique non-exploding solution, we show that the modified Itô–Taylor scheme of order γ has pathwise convergence order γ ? ε for arbitrary ε > 0 as long as the coefficients of the equation are sufficiently differentiable. In particular, no global Lipschitz conditions for the coefficients and their derivatives are required. This applies for example to the so called square root diffusions.  相似文献   

12.
We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. Domains are bounded, and have finite fluctuations. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is “spectral” in the polynomial chaos order, in any subdomain which does not contain the random boundaries.  相似文献   

13.
In this article, we study a type of coupled reflected forward–backward stochastic differential equations (reflected FBSDEs, for short) with continuous coefficients, including the existence and the uniqueness of the solution of our reflected FBSDEs as well as the comparison theorem. We prove that the solution of our reflected FBSDEs gives a probabilistic interpretation for the viscosity solution of an obstacle problem for a quasilinear parabolic partial differential equation.  相似文献   

14.
The solvability of forward—backward stochastic differential equations (FBSDEs for short) has been studied extensively in recent years. To guarantee the existence and uniqueness of adapted solutions, many different conditions, some quite restrictive, have been imposed. In this paper we propose a new notion: the approximate solvability of FBSDEs, based on the method of optimal control introduced in our primary work [15]. The approximate solvability of a class of FBSDEs is shown under mild conditions; and a general scheme for constructing approximate adapted solutions is proposed. Accepted 17 April 2001. Online publication 14 August 2001.  相似文献   

15.
In this paper for the approximate solution of stochastic partial differential equations (SPDEs) of Itô-type, the stability and application of a class of finite difference method with regard to the coefficients in the equations is analyzed. The finite difference methods discussed here will be either explicit or implicit and a comparison between them will be reported. We prove the consistency and stability of these methods and investigate the influence of the multiplier (particularly multiplier of the random noise) in mean square stability. From stochastic version of Lax-Richtmyer the convergence of these methods under some conditions are established. Numerical experiments are included to show the efficiency of the methods.  相似文献   

16.
In this paper, we are interested in numerical solutions of stochastic functional differential equations with jumps. Under a global Lipschitz condition, we show that the pth-moment convergence of Euler-Maruyama numerical solutions to stochastic functional differential equations with jumps has order 1/p for any p≥2. This is significantly different from the case of stochastic functional differential equations without jumps, where the order is 1/2 for any p≥2. It is therefore best to use the mean-square convergence for stochastic functional differential equations with jumps. Moreover, under a local Lipschitz condition, we reveal that the order of mean-square convergence is close to 1/2, provided that local Lipschitz constants, valid on balls of radius j, do not grow faster than logj.  相似文献   

17.
Forward–backward stochastic differential equations (FBSDEs) have attracted significant attention since they were introduced, due to their wide range of applications, from solving non-linear PDEs to pricing American-type options. Here, we consider two new classes of multidimensional FBSDEs with distributional coefficients (elements of a Sobolev space with negative order). We introduce a suitable notion of solution and show its existence and in certain cases its uniqueness. Moreover we establish a link with PDE theory via a non-linear Feynman–Kac formula. The associated semi-linear parabolic PDE is the same for both FBSDEs, also involves distributional coefficients and has not previously been investigated.  相似文献   

18.
Recently, new higher order finite volume methods (FVM) were introduced in [Z. Cai, J. Douglas, M. Park, Development and analysis of higher order finite volume methods over rectangles for elliptic equations, Adv. Comput. Math. 19 (2003) 3-33], where the linear system derived by the hybridization with Lagrange multiplier satisfying the flux consistency condition is reduced to a linear system for a pressure variable by an appropriate quadrature rule. We study the convergence of an iterative solver for this linear system. The conjugate gradient (CG) method is a natural choice to solve the system, but it seems slow, possibly due to the non-diagonal dominance of the system. In this paper, we propose block iterative methods with a reordering scheme to solve the linear system derived by the higher order FVM and prove their convergence. With a proper ordering, each block subproblem can be solved by fast methods such as the multigrid (MG) method. The numerical experiments show that these block iterative methods are much faster than CG.  相似文献   

19.
Additive Schwarz algorithms for parabolic convection-diffusion equations   总被引:6,自引:0,他引:6  
Summary In this paper, we consider the solution of linear systems of algebraic equations that arise from parabolic finite element problems. We introduce three additive Schwarz type domain decomposition methods for general, not necessarily selfadjoint, linear, second order, parabolic partial differential equations and also study the convergence rates of these algorithms. The resulting preconditioned linear system of equations is solved by the generalized minimal residual method. Numerical results are also reported.This work was supported in part by the National Science Foundation under Grant NSF-CCR-8903003 at the Courant Institute, New York University and in part by the National Science Foundation under contract number DCR-8521451 and ECS-8957475 at Yale University  相似文献   

20.
The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with It?o’s stochastic delayed equations as the forward equations and anticipated backward stochastic differential equations as the backward equations. The existence and uniqueness results of the general FBSDEs are obtained. In the framework of the general FBSDEs in this paper, the explicit form of the optimal control for linearquadratic stochastic optimal control problem with delay and the Nash equilibrium point for nonzero sum differential games problem with delay are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号