首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
研制了基于脉冲电容器放电回路的亚微秒金属丝电爆炸纳米粉体制备实验平台,包括电爆炸过程电流和电压测量系统。利用透射电子显微镜(TEM)观察纳米粉体的形态与结构,并通过电镜统计观察法分析TEM图像得到纳米粉体的粒度大小及其分布。在氩气中电爆炸铝丝制备铝纳米粉体,通过改变电容器充电电压,即初始储能,实验研究沉积能量对铝纳米粉体特性的影响规律。结果表明:铝纳米粉体颗粒形态与结构主要由氩气气压的高低决定,与沉积能量基本无关。增大丝爆过程的沉积能量可显著缩小铝纳米粉体粒度分布范围,减小颗粒平均粒径,并有效地抑制纳米粉体中亚微米颗粒的形成。随着沉积能量E与氩气气压p比值(Ep-1)增大,铝纳米粉体颗粒平均粒径、最大粒径和粒径大于100 nm颗粒所占比例均呈指数函数单调减小。  相似文献   

2.
对s脉冲电压作用下铜丝水中电爆炸的能量沉积过程进行了实验研究,利用自积分Rogowski线圈和电阻分压器分别测量铜丝电爆炸时的电流和电压。利用测量电压波形确定了熔融起始、熔融结束、汽化起始和击穿时刻点,将铜丝电爆炸划分成熔融、液态和汽化3个阶段。通过数学方法计算了3个阶段和击穿前的沉积总能量。通过实验和计算,分析了电路参数,包括放电电压和回路电感,以及铜丝特性,包括铜丝长度和直径,对铜丝电爆炸过程中3个阶段和击穿前沉积总能量的影响。结果表明:在s脉冲电压作用下,放电电压、回路电感、铜丝长度和直径对熔融阶段能量沉积影响较小,但对液态和汽化阶段能量沉积影响较大,通过调节电路参数提高电流上升速率,可以显著提高汽化和击穿前的沉积能量。  相似文献   

3.
建立了一台用于纳米粉体制备的电爆炸金属丝装置,它可以在不打开放电腔体情况下,依次电爆炸8根金属丝。对电爆炸金属丝进行了电路模拟,电路模拟结果表明,减小放电回路电感,或在保持电容器初始储能不变条件下,提高充电电压的同时减小储能电容可提高能量注入速率。为了理解金属蒸气形成纳米粉体的物理过程,利用马赫-曾德激光干涉方法,研究了丝爆后金属蒸气及等离子体的演化过程,得到了电爆丝的典型物理图像,观察到电爆丝中金属蒸气喷发的“热滞后”现象及金属蒸气的多次喷发现象。并利用电爆丝法制备了氮化钛、二氧化钛、铜氧化物和氧化锌的纳米粉体。  相似文献   

4.
电爆金属丝产生纳米粉体   总被引:6,自引:2,他引:4       下载免费PDF全文
建立了一台用于纳米粉体制备的电爆炸金属丝装置,它可以在不打开放电腔体情况下,依次电爆炸8根金属丝。对电爆炸金属丝进行了电路模拟,电路模拟结果表明,减小放电回路电感,或在保持电容器初始储能不变条件下,提高充电电压的同时减小储能电容可提高能量注入速率。为了理解金属蒸气形成纳米粉体的物理过程,利用马赫-曾德激光干涉方法,研究了丝爆后金属蒸气及等离子体的演化过程,得到了电爆丝的典型物理图像,观察到电爆丝中金属蒸气喷发的热滞后现象及金属蒸气的多次喷发现象。并利用电爆丝法制备了氮化钛、二氧化钛、铜氧化物和氧化锌的纳米粉体。  相似文献   

5.
刘凤馨  冯国英  杨超  周寿桓 《强激光与粒子束》2018,30(7):074103-1-074103-6
设计并搭建了基于高压放电方式的金属丝电爆炸制备纳米粉体的实验装置,并配备了电流电压测量辅助系统,可以方便地制备纳米颗粒,实时记录电爆炸过程中的电流和电压。对Zr丝进行电爆炸实验;理论上分析了Zr丝在电爆炸过程中的沉积能量以及物态的变化过程。研究了充电电压对沉积能量和纳米粉体特性的影响规律。通过元素能谱(EDS)和X射线衍射仪(XRD)对制备的纳米粉体做了成分分析。采用透射电子显微镜(TEM)观察纳米粉体的形貌和结构,并用电镜统计观察法得到纳米粉体的粒度分布。研究结果表明:电压的增大,会使沉积能量增加,并缩短锆丝完全汽化所需时间。增大充电电压可显著缩小纳米粉体的粒径分布范围,并得到更小平均粒径的颗粒。电爆炸锆丝的产物是ZrO2纳米颗粒,其晶相结构为单斜晶系(m-ZrO2)和立方晶系(c-ZrO2),并且颗粒呈良好的球形,表面光滑,轮廓清晰,粒径分布主要集中在10 nm到40 nm之间。  相似文献   

6.
采用电爆炸法制造纳米金属颗粒。分析了铜丝在电爆炸过程中的物态变化,即从固态、液态、气态到离子态;同时理论研究了纳米铜粉粒径大小及分布、成分组成与爆炸时的能量、铜丝的直径和铜丝长度的关系;定义了粒径均匀度,通过粒径平均大小和粒径均匀度比较,分析了纳米粒径的大小分布情况;通过X射线衍射仪(XRD),透射电子显微镜(TEM)对电爆炸制造出的纳米铜颗粒做了测定与定量分析。结果表明:铜粉的主要成分由氧化铜、氧化亚铜及单晶铜组成,各成分所占比例与爆炸缸内的真空度相关。纳米金属微粒的粒径平均值、粒径均匀度与铜丝长度、直径、充电电压、放电时间等因素相关。  相似文献   

7.
采用电爆炸法制造纳米金属颗粒。分析了铜丝在电爆炸过程中的物态变化,即从固态、液态、气态到离子态;同时理论研究了纳米铜粉粒径大小及分布、成分组成与爆炸时的能量、铜丝的直径和铜丝长度的关系;定义了粒径均匀度,通过粒径平均大小和粒径均匀度比较,分析了纳米粒径的大小分布情况;通过X射线衍射仪(XRD),透射电子显微镜(TEM)对电爆炸制造出的纳米铜颗粒做了测定与定量分析。结果表明:铜粉的主要成分由氧化铜、氧化亚铜及单晶铜组成,各成分所占比例与爆炸缸内的真空度相关。纳米金属微粒的粒径平均值、粒径均匀度与铜丝长度、直径、充电电压、放电时间等因素相关。  相似文献   

8.
通过实验,研究了充电电压、爆炸箔尺寸、绝缘膜覆盖情况等因素对微型爆炸箔电爆炸特性的影响。结果表明,当回路参数一定时,爆炸箔的爆炸时间主要由充电电压和爆炸箔的横截面积决定,充电电压越高或者爆炸箔的横截面积越小,爆炸时间越短;而爆炸箔长度以及绝缘膜覆盖情况对爆炸箔爆炸时间的影响较小。此外,实验还给出了微型铜箔横截面积为100~600μm^2时的电压起爆阈值,能够为以微型爆炸箔作为导通元件的平面介质开关的优化设计提供参考。  相似文献   

9.
叙述了金属导体电爆炸的物理过程,分析了金属导体电爆炸时电阻率与比作用量、压力、能量、密度、爆炸产物膨胀速度、导体电流密度及周围介质等影响因素的关系,从而确定电爆炸断路开关的一般设计原则。  相似文献   

10.
电爆炸断路开关   总被引:13,自引:3,他引:13       下载免费PDF全文
 叙述了金属导体电爆炸的物理过程,分析了金属导体电爆炸时电阻率与比作用量、压力、能量、密度、爆炸产物膨胀速度、导体电流密度及周围介质等影响因素的关系,从而确定电爆炸断路开关的一般设计原则。  相似文献   

11.
A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF-4 μF typically charged to 8 kV-30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20nm-80nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy Wd is often less than sublimation energy W s due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = W d /Ws ) increasing.  相似文献   

12.
The properties of NiO nanopowders prepared by electrical explosion of a wire in an oxygen-containing atmosphere are presented. Most of the NiO nanopowders are found to be oxygen-enriched, the excess of oxygen depending mainly on the nickel vapor concentration. The dependences of the powder particle size on the oxygen concentration and overheating of the exploding metal are discussed. The powder nanoparticles are both single-crystal and polycrystalline with a rhombohedral lattice and have different shapes (from cubic to spherical). There typical sizes range from 15 to 50 nm, depending on the explosion conditions.  相似文献   

13.
高压击穿铜丝物相研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高压放电的方式对材料进行击穿,可以方便地制造纳米颗粒.搭建了高压击穿实验装置,对铜丝进行高压击穿实验;分别采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)和元素能谱(EDS)、X射线衍射(XRD)测试,对铜丝击穿丝状物进行了形貌和成份分析.研究了铜丝高压击穿后的物相特性.研究结果发现,在高压作用下铜丝被充分电离,产生丝状分布,其构成为纳米颗粒的凝结;纳米颗粒的直径分布主要集中在30—60nm之间;颗粒产物由铜元素和氧元素组成;它们以单晶Cu,Cu2O和CuO组成混合物;粒径大小、产物成分与铜丝长度、直径及电压等因素相关.  相似文献   

14.
王坤  史宗谦  石元杰  白骏  李阳  武子骞  邱爱慈  贾申利 《物理学报》2016,65(1):15203-015203
开展了铝单丝在负极性电流脉冲作用下电爆炸特性的研究.利用皮秒激光探针,搭建了阴影、纹影和干涉的光学诊断平台,得到了不镀膜铝丝典型的能量沉积过程,在电压崩溃时刻其沉积能量为2.4 eV/atom.为了增加金属丝内的沉积能量,开展了相同电参数及金属丝尺寸下的镀膜铝丝电爆炸实验,其沉积能量可达到5 eV/atom,实现了在电压崩溃之前铝丝完全气化(完全气化所需能量为4 eV/atom).阴影图像展示了高密度丝核区域的膨胀过程,不镀膜铝丝平均膨胀速度为2.2 km/s,而镀膜铝丝因为沉积能量大,其膨胀速度约为不镀膜铝丝的2.3倍,高密度区域膨胀速度为5 km/s.由于阴影不能反映低密度等离子体的膨胀,开展了平行双丝实验,通过测量自发光辐射,估算了低密度等离子体的膨胀速度.利用条纹相机拍摄了不镀膜铝丝电爆炸过程中自发光区域的图像.纹影图像清晰地展示了不镀膜铝丝在电爆炸过程中形成的核冕结构,而镀膜铝丝电爆炸过程中核冕结构得到了一定程度的抑制.从干涉图像计算了相移,在轴对称假设下对相移进行阿贝尔逆变换,重构了三维的铝原子数密度分布.  相似文献   

15.
采用100 m和40 m两种直径的铝丝,在不同放电电压下,通过分幅成像技术和光谱诊断方法,对铝丝电爆炸过程放电特性及放电等离子参数进行了诊断。实验研究表明:铝丝电爆炸过程中金属蒸气的二次击穿分为内部击穿和沿面击穿两种类型,较细的铝丝更容易发生内部击穿,发生内部击穿时产生的等离子体具有更好的空间均匀性和对称性,其放电过程具有更高的稳定性和可重复性。通过光谱诊断可知铝丝电爆炸等离子体电子温度在104 K量级,电子密度在1018 cm-3量级。  相似文献   

16.
铝丝电爆炸过程的光学诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
采用100 m和40 m两种直径的铝丝,在不同放电电压下,通过分幅成像技术和光谱诊断方法,对铝丝电爆炸过程放电特性及放电等离子参数进行了诊断。实验研究表明:铝丝电爆炸过程中金属蒸气的二次击穿分为内部击穿和沿面击穿两种类型,较细的铝丝更容易发生内部击穿,发生内部击穿时产生的等离子体具有更好的空间均匀性和对称性,其放电过程具有更高的稳定性和可重复性。通过光谱诊断可知铝丝电爆炸等离子体电子温度在104 K量级,电子密度在1018 cm-3量级。  相似文献   

17.
丝电爆过程的电流导入机理   总被引:1,自引:0,他引:1       下载免费PDF全文
毕学松  朱亮  杨富龙 《物理学报》2012,61(7):78105-078105
丝电爆制备纳米粉时, 电流从电极导入金属丝的过程直接影响电极烧损和粉末中微米级大颗粒产生. 分别通过接触和气体放电两种方式导入电流进行电爆试验. 结果表明, 光测量装置检测到的丝端部光电流几乎与回路放电电流同时产生, 而中间位置的光电流则要滞后一段时间; 由探针收集的产物确定, 金属丝端部主要形成熔融粒子, 中间部分主要形成气相粒子. 分析可知, 接触方式导入电流时, 丝端部也存在气体放电现象, 大电流主要通过气体放电形成的等离子体导入. 等离子体对电流的旁路作用会阻碍能量向金属丝沉积, 这是产生微米级大颗粒和"积瘤"主要原因. 通过气体放电方式导入电流时, 电极烧损明显减轻, 并可以避免"积瘤"产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号