首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee MT  Yen CK  Yang WP  Chen HH  Liao CH  Tsai CH  Chen CH 《Organic letters》2004,6(8):1241-1244
We have synthesized a new green fluorescent dopant C-545P having incorporated five strategically placed "methyl" steric spacers on the julolidyl ring system. C-545P has good thermal properties and photostability, and when fabricated as a dopant in an Alq(3)-hosted OLED device, it shows notable improvement in luminance efficiency and is more resistant to concentration quenching than C-545T, particularly in the doping concentration range between 1 and 2% v/v, while achieving comparable device stability. [structure: see text]  相似文献   

2.
本文用半经验CNDO/2量子化学计算方法研究了各种掺杂剂对聚乙炔中孤子性质的影响。掺杂剂的存在使孤子的宽度变小, 且p型掺杂剂比n型掺杂剂的影响更大, 这主要是由于掺杂剂与聚乙炔链之间的电荷转移量不同造成的。  相似文献   

3.
We report high thermoelectric performance in nanostructured p-type PbS, a material consisting of highly earth abundant and inexpensive elements. The high level of Na doping switched intrinsic n-type PbS to p-type and substantially raised the power factor maximum for pure PbS to ~9.0 μW cm(-1) K(-2) at >723 K using 2.5 at. % Na as the hole dopant. Contrary to that of PbTe, no enhancement in the Hall coefficient occurs at high temperature for heavily doped p-type PbS, indicating a single band model and no heavy hole band. We also report that the lattice thermal conductivity of PbS can be greatly reduced by adding SrS or CaS, which form a combination of a nanostructured/solid solution material as determined by transmission electron microscopy. We find that both nanoscale precipitates and point defects play an important role in reducing the lattice thermal conductivity, but the contribution from nanoscale precipitates of SrS is greater than that of CaS, whereas the contribution from point defects in the case of CaS is greater than that of SrS. Theoretical calculations of the lattice thermal conductivity based on the modified Callaway model reveal that both nanostructures and point defects (solid solution) effectively scatter phonons in this system. The lattice thermal conductivity at 723 K can be reduced by ~50% by introducing up to 4.0 at. % of either SrS or CaS. As a consequence, ZT values as high as 1.22 and 1.12 at 923 K can be achieved for nominal Pb(0.975)Na(0.025)S with 3.0 at. % SrS and CaS, respectively. No deterioration was observed after a 15 d annealing treatment of the samples, indicating the excellent thermal stability for these high performance thermoelectrics. The promising thermoelectric properties of nanostructured PbS point to a robust low cost alternative to other high performance thermoelectric materials.  相似文献   

4.
Thermal transporting properties of electrically conductive polyaniline films were first investigated in wide range of temperatures above room temperature as organic thermoelectric materials. Thermal conductivities of various protonic acid-doped polyaniline films were measured by combination of a laser flash method and a differential scanning calorimeter in relation with electrical conductivity and a kind of dopant. The thermal conductivities thus measured are in the range of conventional organic polymers, indicating that the doped polyaniline films have extremely low thermal conductivities among electrically conductive materials, and have correlation with neither electrical conductivity, nor a kind of dopant. Consequently the polyaniline film, which shows very high electrical conductivity, has comparable thermoelectric figure-of-merit (ZT) with feasible inorganic thermoelectric materials such as iron silicide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
本文总结了基于掺杂发光的有机电致磷光器件(PhOLED)中磷光材料被激发的途径及机理,并指出不同主体材料对器件性能的不同影响.全面介绍了小分子主体材料研究的新进展及它们在PhOLEDs器件中的运用.比较和讨论了基于各种不同性质主体材料的器件性能,指出主体材料选择策略.同时讨论了各类主体材料的分子结构、热稳定性、三线态能级、载流子迁移率及HOMO/LUMO能级之间的关系,揭示了上述特性对器件性能影响.  相似文献   

6.
This paper summarizes the mechanism and routes for excitation of triplet emitters in dopant emission based phosphorescent organic light-emitting diodes (PhOLEDs), providing a comprehensive overview of recent progress in molecular hosts for triplet emitters in PhOLEDs. Particularly, based on the nature of different hosts, e.g., hole transporting, electron transporting or bipolar materials, in which the dopant emitters can be hosted to generate phosphorescence, the respective device performances are summarized and compared. Highlights are given to the relationships among the molecular structure, thermal stability, triplet energy, carrier mobility, molecular orbital energy level and their corresponding device performances.  相似文献   

7.
Mg、Zn掺杂AlN电子结构的第一性原理计算   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)的第一性原理平面波超软赝势方法, 对Mg、Zn 掺杂AlN 的32 原子超原胞体系进行了几何结构优化, 从理论上给出了掺杂和非掺杂体系的晶体结构参数, 对纤锌矿结构AlN 晶体及AlN:Mg、AlN: Zn 的结构、能带、结合能、电子态密度、集居数、差分电荷分布进行计算和分析. 计算结果表明, AlN:Mg、AlN: Zn 都能提供很多的空穴态, 形成p 型电导, 并且Mg是较Zn 更好的p型掺杂剂.  相似文献   

8.
The effects of various dopants on solitons in polyacetylene were studied by using CNDO/2 level semiempirical quantum chemical method. The width of solitons is reduced when dopant is present, and the charge density wave(CDW) is further gathered on the carbon atom in soliton center. The effects of p-type of dopants are greater than those of n-type of ones. The charge transfer in doped polyacetylene can be achieved by the propagation of CDW along the chain. The conductivity of doped polyacetylene is proportional to the quantity of charge transfer between dopant and polyacetylene chain.  相似文献   

9.
We describe an electrochemical method of directly growing conducting polymer nanostructures between metal electrodes with the geometry controlled by hydrophilic/hydrophobic patterns. The surface patterning can be achieved by a large number of lithographic methods such as AFM, electron-beam, elastomeric microprinting, and photolithography and is compatible with industrial semiconductor fabrication processes. Conducting polymer structures so formed have good alignment compared to bulk synthesis and are grown in place between electrodes. Polypyrrole field effect transistors have been produced using this method. Electrical measurements show conductivity strongly dependent on the presence of anionic dopant species during growth. Devices grown with a high concentration of dopant show metallic behavior, while those with less doping behave as p-type semiconductors.  相似文献   

10.
A successful model for the design of efficient dyes for p-type dye-sensitized solar cells (DSSCs) is presented. As an example, a novel and efficient organic dye containing a triphenylamine chromophore has been synthesized and successfully applied in a p-type DSSC. The highest incident photon-to-current conversion efficiency (IPCE) of 18% in the visible region has been obtained, which is the highest value so far in p-type DSSCs. This is remarkably high, considering that only 600 nm thin NiO mesoporous films were used as p-type DSSC electrodes.  相似文献   

11.
Metal-free organic electrode materials have attracted vast research attention owing to their designable structures and tunable electrochemical properties. Although n-type cathode materials could be used in various metal-ion batteries, p-type ones with high potential can deliver high energy density. Herein, we report a new p-type polymeric cathode material, poly(2-vinyl-5,10-dimethyl-dihydrophenazine) (PVDMP), with a theoretical capacity of 227 mAh g−1. PVDMP featuring two-step redox reaction will be doped by two anions to maintain electroneutrality during oxidation, which resulted in an anion-dependent electrochemical behavior of PVDMP-based cathode. The suitable dopant anion for PVDMP was selected and the doping mechanism was confirmed. Under the optimized condition, PVDMP cathode can deliver a high initial capacity of 220 mAh g−1 at 5 C and even remains 150 mAh g−1 after 3900 cycles. This work not only provides a new kind of p-type organic cathode materials but also deepens the understanding of its anion-dependent redox chemistry.  相似文献   

12.
掺杂剂对聚乙炔中电荷密度波的影响   总被引:2,自引:0,他引:2  
用CNDO/2方法研究了各种掺杂剂对聚乙炔中电荷密度波的影响,在掺杂剂附近的碳原子上出现较大的电荷密度,且p型比n型掺杂剂的影响更大,讨论了电荷波与导电性的关系。  相似文献   

13.
以多烯烃模拟聚乙炔链,用CNDO/2方法讨论了各种掺杂剂对聚乙炔性质的影响,掺杂剂使孤子宽度收缩变窄,且p型掺杂剂比n型掺杂剂的影响更大,掺杂剂影响聚乙炔链中的电荷密度波,使电荷主要集中分布于掺杂剂附近的碳原子上。掺杂碱金属时,掺杂剂原子的最高占据轨道与聚乙炔中孤子自旋轨道之间的作用由Li到K依次增强,解释了ESR实验结果。  相似文献   

14.
The pore formation with the diameter of around 100 nm into a lightly doped p-type Si was achieved with the intrusion of silver particles by electrolysis in HF aqueous solution. The route resembles the metal-catalyzed electroless pore formation, but the present method uses anodic polarization instead of chemical etching in the presence of oxidizing agent. A microporous layer was observed around the pores formed as the tracks of silver particles. Thickness of the microporous layer around the track increased with the increase in current density. The thickness was varied in accordance with the time-programmed variation of current density. Conversely, the intrusion of silver particles seldom occurred in heavily doped p-type silicon, while micropores were formed independently of the location of the particles. The concentration of dopant affects the silver-particle-assisted porosification.  相似文献   

15.
Spectroscopic [UV–visible and Fourier transform IR (FTIR)] and thermal properties of chemically synthesized polyanilines are found to be affected by varying the protonation media (acetic, citric, oxalic, and tartaric acid). The optical spectra show the presence of a greater fraction of fully oxidized insulating pernigraniline phase in polyaniline doped with acetic acid. In contrast, the selectivity in the formation of the conducting phase is higher in oxalic acid as a protonic acid media. The FTIR spectra of these polymers reveal a higher ratio of the relative intensities of the quinoid to benzenoid ring modes in acetic acid doped polyaniline. Scanning electron micrographs revealed a sponge‐like structure derived from the aggregation of the small granules in acetic acid and oxalic acid doped polyaniline. A three‐step decomposition pattern is observed in all the polymers, regardless of the protonic acid used for the doping. The second step loss related to the loss of dopant is found to be higher in the oxalic acid doped polymer. In accordance with these results the conductivity is also found to be higher in oxalic acid doped material. The temperature dependent conductivity measurements show the thermal activated behavior in all the polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2043–2049, 2004  相似文献   

16.
采用基于密度泛函理论的第一性原理平面波超软赝势计算方法,研究了In、Sc p型掺杂对SrTiO_3母体化合物稳定性、电子结构和光学性质的影响.计算结果表明:掺杂后,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3的稳定性降低,体系显示p型简并半导体特征,掺杂仅引起杂质原子近邻区域的几何结构发生变化.同时,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系的光学带隙分别展寬0.35、0.30 eV,光学吸收边发生蓝移,在1.25.2.00 eV的能量区间出现新的吸收峰,该吸收峰与体系Drude型自由载流子的激发相关.此外,SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系的可见光透过率有了明显的提高,在350-625 nm波长范围透过率高于85%.掺杂原子在费米能级处低的电子态密度限制了跃迁概率和光吸收.大的禁带宽度、小的跃迁概率和弱的光吸收是SrIn_(0.125)Ti_(0.875)O_3和SrSc_(0.125)Ti_(0.875)O_3体系具有较高光学透明度的原因.  相似文献   

17.
本研究针对蓝光主体材料相对缺乏的现状,利用有机电致磷光器件高效率的优势,选择1,2,4-三唑为电子传输功能基团、咔唑为空穴传输功能基团,设计、制备了新型主体材料oCzTz。通过邻位取代方式实现了分子立体构型高度扭曲,从而使分子的三重态能量达到3.01eV;oCzTz具有较高的热分解温度(353℃)和玻璃化转变温度(110℃);量化计算显示,分子的前线轨道在咔唑和三唑基团之间高度分离。以oCzTz为主体、以FIrpic为发光客体的天蓝光电致磷光器件启亮电压为3.4V,电流效率和功率效率分别高达37.2cd·A-1和29.2lm·W-1,是以TPBI为电子传输层的同类器件的最高效率之一。  相似文献   

18.
Herein, the influence of silicon surface modification via Si-C(n)H(2n+1) (n=10,12,16,22) monolayer-based devices on p-type 100 and n-type 100 silicon is studied by forming MIS (metal-insulator-semiconductor) diodes using a mercury probe. From current density-voltage (J-V) and capacitance-voltage (C-V) measurements, the relevant parameters describing the electrical behavior of these diodes are derived, such as the diode ideality factor, the effective barrier height, the flatband voltage, the barrier height, the monolayer dielectric constant, the tunneling attenuation factor, and the fixed charge density (Nf). It is shown that the J-V behavior of our MIS structures could be precisely tuned via the monolayer thickness. The use of n-type silicon resulted in lower diode ideality factors as compared to p-type silicon. A similar flatband voltage, independent of monolayer thickness, was found, indicating similar properties for all silicon-monolayer interfaces. An exception was the C10-based monolayer device on p-type silicon. Furthermore, low values of N(f) were found for monolayers on p-type silicon (approximately 6 x 10(11) cm(-2)). These results suggest that Si--C linked monolayers on flat silicon may be a viable material for future electronic devices.  相似文献   

19.
Polystyrene with different degrees of sulfonation was empolyed as a polymeric dopant for polyaniline. The purpose of using a polymeric dopant is to avoid the migration of a small molecule dopant to increase stability of the doped complex. We applied the polymeric dopant to polyaniline in three different ways: in solid state, in solution and in gel state. In solid state, the conducting form was achieved only through a novel thermal doping method with the increase in temperature and pressure. In solution, the doping process was shown to be dependent on the nature of the solution and also on the molecular weight of the polymer. In the gel form of polyaniline, a polymeric dopant with a surprising low degree of sulfonation was found to be successful in the doping process.  相似文献   

20.
Significant progress has been achieved in the preparation of semiconducting polymers over the past two decades, and successful commercial devices based on them are slowly beginning to enter the market. However, most of the conjugated polymers are hole transporting, or p-type, semiconductors that have seen a dramatic rise in performance over the last decade. Much less attention has been devoted to electron transporting, or n-type, materials that have lagged behind their p-type counterparts. Organic electron transporting materials are essential for the fabrication of organic p-n junctions, organic photovoltaic cells (OPVs), n-channel organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and complementary logic circuits. In this critical review we focus upon recent developments in several classes of electron transporting semiconducting polymers used in OLEDs, OFETs and OPVs, and survey and analyze what is currently known concerning electron transporting semiconductor architecture, electronic structure, and device performance relationships (87 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号