首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We report on an effective route to decorate titanium nanotube arrays (TiNT) with silver nanoparticles (AgNPs). In this method, surface-adsorbed antibody molecules serve as templates to bind silver ions by electrostatic interaction. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. This route also was successfuly applied to gold nanoparticles (starting from negatively charged metallic precursor ions). Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.
Figure
An effective protein-mediated route to decorate Ag nanoparticles (AgNPs) in TiO2 nanotube arrays (TiNT) is reported. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.  相似文献   

2.
In this article, a novel triple-stimuli hydrogel was prepared by simultaneous formation of super paramagnetic iron oxide nanoparticles (SPION) and crosslinking of poly (acrylic acid) grafted onto kappa carrageenan (κC-g-PAA). The structure, thermal stability, surface morphology, and magnetic property of the κC-g-PAA/SPION hydrogel were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDAX), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Moreover, swelling capacity of the obtained hydrogel was measured at different temperature, pH, and magnetic-field to assess the sensitivity of κC-g-PAA/SPION hydrogel. This synthetic hydrogel was also examined as a controlled drug delivery system and defrasirox release was investigated at different temperature, pH, and magnetic-field. The in vitro antibacterial activity of κC-g-PAA/SPION hydrogel was studied against Escherichia coli and Staphylococcus aureus bacteria where the results showed no antibacterial activity of this new hydrogel. In vitro biocompatibility experiments were undertaken using human bladder epithelial cell line HTB 5637. These results indicated the synthesized κC-g-PAA/SPION hydrogel are nontoxic that will be useful for biomedical applications.
Figure
We introduce a novel triple-stimuli and biocompatible kappa-carrageenan-g-poly(acrylic acid)/SPION nanocomposite as a drug delivery system  相似文献   

3.
Silver–polypyrrole (PPy) core–shell nanoparticles have been fabricated by a facile one-step “green” synthesis using silver nitrate as an oxidant and soluble starch as an environmentally benign stabilizer and co-reducing agent. The morphology and optical properties of the particles were significantly affected by the reaction temperature, soluble starch concentration, and ratio of pyrrole monomer to AgNO3 oxidant. The core–shell nanoparticles exhibited outstanding dispersive properties in deionized water due to residual starch, as compared with PPy nanoparticles in which starch was absent. The mechanism of core–shell nanoparticle formation was elucidated through TEM imaging vs. reaction time. The colloidal and chemical stability of the nanoparticles was demonstrated in a variety of solvents, including acids, bases, and ionic and organic solvents, through monitoring the localized surface plasmon resonance of the nanoparticles. Furthermore, the catalytic properties of these silver–PPy core–shell nanoparticles were also demonstrated.
Figure
Schematic illustration of silver-PPy core-shell nanoparticle formation and methylene blue (MB) reduction using the core-shell nanoparticles as a catalyst.  相似文献   

4.
Surface modification by means of wear protective and antibacterial coatings represents, nowadays, a crucial challenge in the biomaterials field in order to enhance the lifetime of bio-devices. It is possible to tailor the properties of the material by using an appropriate combination of high wear resistance (e.g., nitride or carbide coatings) and biocide agents (e.g., noble metals as silver) to fulfill its final application. This behavior is controlled at last by the outmost surface of the coating. Therefore, the analytical characterization of these new materials requires high-resolution analytical techniques able to provide information about surface and depth composition down to the nanometric level. Among these techniques are Rutherford backscattering spectrometry (RBS), glow discharge optical emission spectroscopy (GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS). In this work, we present a comparative RBS–GDOES–ARXPS study of the surface characterization of Ag–TiCN coatings with Ag/Ti atomic ratios varying from 0 to 1.49, deposited at room temperature and 200 °C. RBS analysis allowed a precise quantification of the silver content along the coating with a non-uniform Ag depth distribution for the samples with higher Ag content. GDOES surface profiling revealed that the samples with higher Ag content as well as the samples deposited at 200 °C showed an ultrathin (1–10 nm) Ag-rich layer on the coating surface followed by a silver depletion zone (20–30 nm), being the thickness of both layers enhanced with Ag content and deposition temperature. ARXPS analysis confirmed these observations after applying general algorithm involving regularization in addition to singular value decomposition techniques to obtain the concentration depth profiles. Finally, ARXPS measurements were used to provide further information on the surface morphology of the samples obtaining an excellent agreement with SEM observations when a growth model of silver islands with a height d?=?1.5 nm and coverage θ?=?0.20 was applied to the sample with Ag/Ti?=?1.49 and deposited at room temperature.
Figure
SEM micrograph of silver nanocluster surface segregation on bioactive AgTiCN coatings as analyzed by a) GDOES, b) RBS, and c) ARXPS depth profiles  相似文献   

5.
A new sense-and-act system was realized by integrating a biocatalytic/bioaffinity electrode responding to immune signals represented by an antibody and a polymer-modified electrode loaded with drug-mimicking species. The release of the drug-mimicking species was achieved specifically in response to a signal antibody, thus demonstrating for the first time an immune-induced drug-releasing process. The present approach promises new options for future applications in controlled drug release and personalized medicine.
Figure
Electrochemical immune-sensing system was integrated with the substance-releasing modified electrode to demonstrate the immune-triggered drug release process  相似文献   

6.
The key step in high quality microbial matrix-assisted laser desorption/ionization mass spectrometry imaging (microbial MALDI MSI) is the fabrication of a homogeneous matrix coating showing a fine-grained morphology. This application note addresses a novel method to apply solid MALDI matrices onto microbial cultures grown on thin agar media. A suspension of a mixture of 2,5-DHB and α-CHCA is sprayed onto the agar sample surface to form highly homogeneous matrix coatings. As a result, the signal intensities of metabolites secreted by the fungus Aspergillus fumigatus were found to be clearly enhanced.
Figure
?  相似文献   

7.
We report on the modification of a glassy carbon electrode with a composite consisting of silver nanoparticles (AgNPs), polydopamine, and graphene to give an electrochemical sensor for catechol. The composite was characterized by transmission electron microscopy, and the electrochemical behavior of catechol at the modified electrode was studied by cyclic voltammetry. The electrochemical response is greatly enhanced and thought to result from a combination of beneficial effects including the good conductivity and large surface area of the AgNPs, the high conductivity of graphene, the synergistic effects of the composite, and the increased quantity of catechol that is adsorbed on the surface of the electrode. Differential pulse voltammetric responses are proportional to the concentration of catechol between 0.5 and 240?μM levels of catechol, and the detection limit is 0.1?μM (S/N?=?3). The performance of the sensor was evaluated with catechol-spiked water samples, and recoveries range from 96.5 % to 103.1 %. The results indicated that the composite presented here is a promising substrate for use in electrochemical sensing.
Graphical abstract
We report on the modification of a glassy carbon electrode with a composite consisting of silver nanoparticles, polydopamine, and graphene to obtain an electrochemical sensor for catechol.  相似文献   

8.
We have developed a method for in-situ construction of a porous network-like silver film on the surface of a glassy carbon electrode (GCE). It is based on a galvanic replacement reaction where a layer of copper nanoparticles is first electrodeposited as a sacrificial template. The silver film formed possesses a porous network-like structure and consists of an assembly of numerous nanoparticles with an average size of 200 nm. The electrode displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward the reduction of nitrate at a working potential of ?0.9 V. The catalytic currents linearly increase with the nitrate concentrations in the range of 0.08–6.52 mM, with a detection limit of 3.5 μM (S/N?=?3) and a repeatability of 3.4 % (n?=?5).
Figure
A facile method was developed for in situ construction of a porous network-like Ag film on a glassy carbon electrode by a galvanic replacement reaction, where a layer of Cu nanoparticles previously electrodeposited as a sacrificial template. Thus-formed Ag film displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward nitrate reduction.  相似文献   

9.
We report on a new method for preconcentration of silver ion at trace level in environmental samples, and its subsequent determination by flame atomic absorption spectrometry (FAAS). The room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafuorophosphate and the chelator 5-(4-dimethylaminobenzylidene)-rhodanine were used for extraction. Ag(I) was back-extracted from the organic phase into thiosulfate solution and then determined via FAAS. The effects of pH, concentration of chelating agent, extraction time and temperature, amounts of ionic liquid, ionic strength and potentially interfering ions were studied. Under optimized conditions, the enhancement factor is 30 was achieved. The detection limit (3???) is 0.28?ng?mL?1, and the relative standard deviation is 4.1% for 7 replicate determinations at 5?ng?mL?1 of Ag(I). The method was validated by analysis of certified reference materials and applied to the determination of Ag(I) in environmental samples with satisfactory results.
Graphical abstract
Silver ions at trace level in environmental samples were chelated by 5-(4-dimethylaminobenzylidene)-rhodanine and preconcentrated by room temperature ionic liquid. After back-extraction, silver was determined by flame atomic absorption spectrometry sensitively.  相似文献   

10.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a well-established technique in materials science, but is now increasingly applied also in the life sciences. Here, we demonstrate the potential of this analytical technique for use in the development of new bone implant materials. We tracked strontium-enriched calcium phosphate cements, which were developed for the treatment of osteoporotic bone, from in vitro to in vivo. Essentially, the spatial distribution of strontium in two different types of strontium-modified calcium phosphate cements is analysed by SIMS depth profiling. To gain information about the strontium release kinetics, the cements were immersed for 3, 7, 14 and 21 days in α-MEM and tris(hydroxymethyl)-aminomethane solution and analysed afterwards by ToF-SIMS depth profiling. For cements stored in α-MEM solution an inhibited strontium release was observed. By using principal component analysis to evaluate TOF-SIMS surface spectra, we are able to prove the adsorption of proteins on the cement surface, which inhibit the release kinetics. Cell experiments with human osteoblast-like cells cultured on the strontium-modified cements and subsequent mass spectrometric analysis of the mineralised extracellular matrix (mECM) prove clearly that strontium is incorporated into the mECM of the osteoblast-like cells. Finally, in an animal experiment, the strontium-doped cements are implanted into the femur of osteoporotic rats. After 6 weeks, only a slight release of strontium was found in the vicinity of the implant material. By using ToF-SIMS, it is proven that strontium is localised in regions of newly formed bone but also within the pre-existing tissue.
Figure
Schematic illustration of the performed measurements.  相似文献   

11.
The use of nanoparticles (NPs) can substantially improve the analytical performance of surface plasmon resonance imaging (SPRi) in general, and in DNA sensing in particular. In this work, we report on the modification of the gold surface of commercial biochips with gold nanospheres, silica-coated gold nanoshells, and silver nanoprisms, respectively. The NPs were tethered onto the surface of the chip and functionalized with a DNA probe. The effects of tethering conditions and varying nanostructures on the SPRi signals were evaluated via hybridization assays. The results showed that coupling between planar surface plasmons and electric fields, generated by localized surface plasmons of the NPs, is mandatory for signal enhancement. Silver nanoprisms gave the best results in improving the signal change at a target DNA concentration of <50 nM by +50 % (compared to a conventional SPRi chip). The limit of detection for the target DNA was 0.5 nM which is 5 times less than in conventional SPRi.
Figure
?  相似文献   

12.
Silver nucleation on gold has been exploited for signal amplification and has found application in several qualitative and quantitative bio-sensing techniques, thanks to the simplicity of the method and the high sensitivity achieved. Very recently, this technique has been tentatively applied to improve the performance of gold-based immunoassays. In this work, the exploitation of the signal amplification due to silver deposition on gold nanoparticles has been first applied to a competitive lateral flow immunoassay (LFIA). The signal enhancement due to silver allowed us to strongly reduce the amount of the competitor and of specific antibodies employed to build an LF device for measuring ochratoxin A (OTA), thus permitting the attainment of a highly sensitive assessment of OTA contamination, with a sensitivity gain of more than 10-fold compared to the gold-based LFIA that used the same immunoreagents and to all previously reported LFIA for measuring OTA. In addition, a less sensitive “quantitative” LFIA could be established, by suitably tuning competitor and antibody amounts, which was characterized by reproducible and accurate OTA determinations (RSD% 6–12 %, recovery% 82–117 %). The quantitative system allowed a reliable OTA quantification in wines and grape musts at the microgram per liter level requested by the European legislation, as demonstrated by a highly results obtained through the quantitative silver-enhanced LFIA and a reference HPLC-FLD on 30 samples.
Figure
The silver enhanced-Lateral Flow ImmunoAssay: strip development based on gold-nanoparticles occurs, followed by the addition of the enhancing solution, which causes the lines to turn black and become more intense, thus increasing detectability.  相似文献   

13.
The assay for alpha-fetoprotein (AFP) is based on the use of immobilized anti-AFP labeled with silver nanoparticles (AgNPs). The immunoreaction between the labeled antibody against AFP and free AFP takes place in pH 6.0 solution and leads to the formation of the respective immunocomplex which displays enhanced resonance light scattering (RLS) intensity at 480 nm. Under the optimal conditions, the intensity of the enhanced RLS is proportional to the concentration of AFP in the range from 0.10 to 50 ng mL?1, with a detection limit of 40 pg mL?1. The characteristics of RLS, the immunocomplex, the immuno response, and the optimum conditions of the immunoreaction have been investigated. The concentration of AFP in 20 serum specimens was determined by the new assay, and results are consistent with those obtained with a commercially available ELISA kit.
Figure
A new resonance light scattering assay of AFP based on silver nanoparticle and immunoreaction was developed.  相似文献   

14.
We have developed a method for the colorimetric determination of copper ions (Cu2+) that is based on the use of silver-coated gold nanorods (Au@Ag NRs). Its outstanding selectivity and sensitivity result from the catalytic leaching process that occurs between Cu2+, thiosulfate (S2O3 2?), and the surface of the Au@Ag NRs. The intrinsic color of the Au@Ag NRs changes from bright red to bluish green with decreasing thickness of the silver coating. The addition of Cu2+ accelerates the leaching of silver from the shell caused in the presence of S2O3 2?. This result in a decrease in the thickness of the silver shell which is accompanied a change in color and absorption spectra of the colloidal solution. The shifts in the absorption maxima are linearly related to the concentrations of Cu2+ over the 3–1,000 nM concentration range (R?=?0.996). The method is cost effective and was applied to the determination of Cu2+ in real water samples.
Figure
A facile and sensitive colorimetric strategy for the sensing of Cu2+ based on catalytic leaching of silver coated gold nanorods, Au@Ag NRs  相似文献   

15.
We describe a nanometer sized composite material made from titanium dioxide and silica that was chemically modified with 4-aminophenylarsonic acid and used for selective solid-phase extraction, separation and preconcentration of of aluminum(III) prior to its determination by ICP-OES. Under optimized conditions, the static adsorption capacity is 56.58?mg?g?1, the enrichment factor is 150, the relative standard deviation is 1.6% (for n?=?11), and the detection limit (3?s) is 60?pg?mL?1. The method was validated by analyzing the reference materials GBW 09101 (hair) and GBW 10024 (scallop) and successfully applied to the determination of trace Al(III) in spiked water samples and human urine, with recoveries ranging from 96% to 101%.
Figure
4-aminophenylarsonic acid modified nanometer TiO2/SiO2 composite material has been developed to separate and concentrate trace Al(III) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in column mode, and the new adsorbent presents high selectivity and adsorption capacity for the solid phase extraction of trace Al(III).  相似文献   

16.
A novel facile method has been established for rapid on-site detection of antidiabetes chemicals used to adulterate botanical dietary supplements (BDS) for diabetes. Analytes and components of pharmaceutical matrices were separated by thin-layer chromatography (TLC) then surface-enhanced Raman spectroscopy (SERS) was used for qualitative identification of trace substances on the HPTLC plate. Optimization and standardization of the experimental conditions, for example the method used for preparation of silver colloids, the mobile phase, and the concentration of colloidal silver, resulted in a very robust and highly sensitive method which enabled successful detection when the amount of adulteration was as low as 0.001 % (w/w). The method was also highly selective, enabling successful identification of some chemicals in extremely complex herbal matrices. The established TLC–SERS method was used for analysis of real BDS used to treat diabetes, and the results obtained were verified by liquid chromatography–triple quadrupole mass spectrometry (LC–MS–MS). The study showed that TLC–SERS could be used for effective separation and detection of four chemicals used to adulterate BDS, and would have good prospects for on-site qualitative screening of BDS for adulterants.
Figure
Experimental procedure of TLC-SERS method  相似文献   

17.
As nanoscale materials have gained in economic importance over recent years, concerns about accumulation in the environment and, consequently, analysis of nanoparticles in biological material have increasingly become the focus of scientific research. A nanomaterial used in a wide range of food, consumer and household products is titanium dioxide (nTiO2). Monitoring of nTiO2 via determination of elemental titanium (Ti) can be very challenging because of a variety of possible interferences. This work describes problems during the development of a quantification method for titanium dioxide (TiO2) using inductively coupled plasma-quadrupole mass spectrometry (ICP-qMS). To evaluate the analytical method, certified vegetable reference material NCS DC 73349 was used. Interestingly, measurements of NCS DC 73349 seemed to result in acceptable recovery values—however, this was without considering interferences or conceivable differences in the natural isotopic abundance of the certified titanium calibration solution and NCS DC 73349. Actually, recoveries were lower than initially assumed. The potential interferences causing augmented recovery could be attributed to the presence of the elements sulfur (S) and phosphorus (P), which were able to form oxide ions and nitrogen-interfering species. The effect of such interfering cluster ions could be prevented by dry ashing as a sample preparation step, to evaporate S and P, before digestion with aqua regia in a high-pressure asher (HPA). Final practicability of the analysis method was proved by monitoring the uptake of nTiO2 by the microalgae Scenedesmus acutus in an environmental exposure study.
Figure
?  相似文献   

18.
The intension of current study was to determine antibacterial and drug releasing capacity of green synthesized silver nanoparticles (AgNps) with Moringa oleifera resin in the presence of Montelukast sodium and Ibuprofen. This plant gum is economic, easily available, biodegradable, safe and potential tablet binder. There was no significant study reported on the incorporation of green synthesized silver nanoparticle with plant resin in drug release. The aqueous extract of Clerodendron phlomoides was used for the bioreduction of silver nanoparticles as well as a capping agent. This green synthesized AgNps was observed in UV at 489 nm due to the SPR (Surface Plasmon Effect) effect, and the presence of protein and polyol compounds was identified by FTIR. The crystalline structure of AgNps was analyzed by XRD, elemental silver composition was measured by EDAX, morphological structure and size was revealed by SEM and TEM analysis. The antibacterial effect of green synthesized AgNps was analyzed by zone of inhibition method. Silver nanoparticles incorporated in M. oleifera plant resin and its functional groups and thermal degradation properties were characterized by FTIR and TGA, respectively. The drug release properties of the AgNps incorporated with plant resin were evaluated for the sustained release and compared with raw plant gum without AgNps consistency.  相似文献   

19.
New hydrogels having high water content, ~96 wt%, composed of cationic surfactants, alkyltrimethylammonium bromides (C n TAB, n?=?12, 14, 16, and 18), and a small dye molecule, sodium azobzenzene 4,4′-dicarboxylic acid (AzoNa2), was firstly obtained. The three-dimensional network structures of hydrogels were determined by transmission electron microscopy images, scanning electron microscopy images, 1H nuclear magnetic resonance, and small-angle X-ray scattering measurements. The mechanism of hydrogel formation was also illustrated. The rheological data were obtained to investigate the mechanical strength of hydrogels, which were turned out to be strong mechanical strength (~104 Pa) materials. We found that the strength of the hydrogel depends on the fiber density, which can be controlled by changing the proportion of the two compounds, concentration of surfactants, temperature, and the chain length of the surfactant. Interestingly, the hydrogels were found to have a multiple-stimulus response property. A reversible thermal, UV–vis, or a chemical response was investigated in the mixtures of cationic surfactants and azoic salt for the first time. These findings may find potential applications such as sensors, actuators, shape memories, and drug delivery systems, etc.
Figure
Transition between fibers and spherical micelles via photo-irradiation  相似文献   

20.
We have developed a simple and efficient method for the enhanced loading of silver nanoparticles onto carbon nanospheres, and how this method can be used to design an electrochemical sensor for hydrogen peroxide (HP). A glassy carbon electrode was modified with hemoglobin, carbon nanospheres, and by enhanced loading of silver nanoparticles onto the carbon nanospheres via spontaneous polymerization of dopamine. The hemoglobin exhibits a remarkable electrocatalytic activity for the reduction of HP. The electrochemical response to HP is linear range in the 1.0–147.0?μM concentration range, with a detection limit of 0.3?μM at a signal-to-noise ratio of 3.
Figure
A simple and efficient method has developed for enhanced loading of silver nanoparticles onto carbon nanospheres via polydopamine (AgNP-Pdop@CNPs). The direct chemistry of hemoglobin has been achieved at the AgNP-Pdop@CNPs modified glassy carbon electrode and the modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide. The electrochemical response to H2O2 shows a linear range of 1.0–147.0?μM with a calculated detection limit of 0.3?μM at a signal-to-noise ratio of 3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号