首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel rapid (20 min) fluorescent lateral flow test for chloramphenicol (CAP) detection in milk was developed. The chosen format is a binding-inhibition assay. Water-soluble quantum dots with an emission peak at 625 nm were applied as a label. Milk samples were diluted by 20 % with phosphate buffer to eliminate the matrix effect. The result of the assay could be seen by eye under UV light excitation or registered by a portable power-dependent photometer. The limit of CAP detection by the second approach is 0.2 ng/mL, and the limit of quantitation is 0.3 ng/mL.
Figure
Principle of proposed immunoassay of chloramphenicol using quantum dots  相似文献   

2.
A europium nanoparticle-based lateral flow immunoassay for highly sensitive detection of chloramphenicol residue was developed. The detection result could be either qualitatively resolved with naked eye or quantitatively analyzed with the assistance of a digital camera. In the qualitative mode, the limit of detection (LOD) was found to be 0.25 ng/mL. In the quantitative mode, the half-maximal inhibition concentration (IC50) was determined to be 0.45 ng/mL and the LOD can reach an ultralow level of 0.03 ng/mL, which is ~100 times lower than that of the conventional colloidal gold-based lateral flow immunoassay. Potential application of the established method was demonstrated by analyzing representative cow milk samples.
Figure
A europium nanoparticle-based lateral flow immunoassay for highly sensitive detection of chloramphenicol (CAP) residue was developed, of which limit of detections (LODs) can reach low levels of 0.25 and 0.03 ng/mL, respectively, in the qualitative and quantitative modes.  相似文献   

3.
We show that the antigen CFP-10 (found in tissue fluids of tuberculosis patients) can be used as a marker protein in a surface-plasmon resonance (SPR) based method for early and simplified diagnosis of tuberculosis. A sandwich SPR immunosensor was constructed by immobilizing the CFP-10 antibody on a self-assembled monolayer on a gold surface, this followed by blocking it with bovine serum albumin. Following exposure of the sensor surface to a sample containing CFP-10, secondary antibody immobilized on nickel oxide nanoparticles are injected which causes a large SPR signal change. The method has a dynamic range from 0.1 to around 150 ng per mL of CFP-10, and a detection limit as low as 0.1 ng per mL. This is assumed to be due to the high amplification power of the NiO nanoparticles.
Figure
Schematic diagram of sensor chip configuration (left) and SPR study based on amplification strategy with NiO nanoparticles (right).  相似文献   

4.
New methods for determination of explosive substances as, for example, 2,4,6-trinitrotoluene (TNT), in a rapid way and at low cost are highly required. An electrochemical platform has been here developed with good characteristics of low dimension, fast response, low cost, and high selectivity. It is based on a commercially available screen printed cell with graphite ink working and auxiliary electrodes and a silver ink quasi-reference electrode. The whole cell is covered with a thick layer of cation exchanging acrylic polymer molecularly imprinted with 2,4,6-trinitrotoluene. The polymeric layer acts at the same time as electrolytic medium and selective receptor. It has been demonstrated that, in this medium, 2,4,6-trinitrotoluene is electroactive at graphite electrode, being reduced by a non-reversible reaction. The peak current (differential pulse voltammogram) is proportional to TNT concentration with limit of detection for TNT around 5?×?10?7?M and linearity range up to 2?×?10?5?M. The selectivity for TNT relative to other reducible compounds as, for example, nitroaromatic derivatives, and to other possible interfering substances, as negatively charged ions, is good. Measurements can be performed in not de-aerated solution and in small volumes (20 μl), so that the proposed platform is very promising for in situ determinations.
Figure
Molecularly imprinted polymer for TNT as selective artificial receptor and ionic medium of the electrochemical cell  相似文献   

5.
A disposable electrochemical myeloperoxidase (MPO) immunosensor was fabricated based on the indium tin oxide electrode modified with a film composed of gold nanoparticles (AuNPs), poly(o-phenylenediamine), multi-walled carbon nanotubes and an ionic liquid. The composite film on the surface of the electrode was prepared by in situ electropolymerization using the ionic liquid as a supporting electrolyte. Negatively charged AuNPs were then adsorbed on the modified electrode via amine-gold affinity and to immobilize MPO antibody. Finally, bovine serum albumin was employed to block possible remaining active sites on the AuNPs. The modification of the electrode was studied by cyclic voltammetry and scanning electron microscopy. The factors affecting the performance of the immunosensor were investigated in detail using the hexacyanoferrate redox system. The sensor exhibited good response to MPO over two linear ranges (from 0.2 to 23.4 and from 23.4 to 300 ng.mL?1), with a detection limit of 0.05 ng.mL?1 (at an S/N of 3).
Figure
A disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film composed of gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes.  相似文献   

6.
A new chromatographic method for the enantioseparation and the determination of (?)-trans-paroxetine and (+)-trans-paroxetine has been developed with the aid of amylose ovomucoid-based chiral stationary phase. The method is faster and five times more sensitive than procedures recommended previously: limit of detection and limit of quantification are 5 and 16 ng/mL, respectively [modified (Ferretti et al. in J Chromatogr B 710:157–164, 1998): 20 and 60 ng/mL]. It was carefully validated and applied for the determination of (?)-trans-paroxetine and (+)-trans-paroxetine in Parogen (Mc Dermott Laboratories Ltd.) and Xetanor (Actavis) coated tablets.
Figure
?  相似文献   

7.
We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng?·?mL-1 concentration range, with a detection limit of 1.8 pg?·?mL-1.
Figure
The Fe3O4@C@CNC was prepared and applied in a CEA immunosensor with the help of a flow-injection photoluminescence system.  相似文献   

8.
We report on the application of an automated and easy-to-use device to directly measure the immunoreactions between adda-specific monoclonal antibodies and microcystins. The antibodies were immobilized on a gold electrode whose surface was modified first with polytyramine and then with gold nanoparticles. The immunoreaction leads to a change in the capacitance of the system. Under optimum conditions, the sensor is capable of performing stable regeneration-assay cycles and has a low detection limit at a concentration of 0.01 pM level of microcystin-leucine-arginine (MC-LR). The surface of the biosensor can be regenerated with pH 2.5 glycine buffer which dissociates the antibody-antigen complex. The biosensor was used to monitor the production of microcystins during batch cultivation of Microcystis aeruginosa (isolated from ponds in Botswana). Liquid chromatography coupled to MS/MS detection was used to identify three variants, viz. MC-LR (995.6 Da), DmMC-LR (981.2 Da) and MC-LA (910.5 Da).
Figure
A capacitive immunosensor was fabricated by immobilizing monoclonal antibodies on a polytyramine-gold nanoparticle layer. The immunosensor was used to quantify microcystins produced by Microcystis aeruginosa; MC-LR, DmMC-LR and MC-LA, and further identified by LC- MS/MS. The results show that cumulative determination of microcystin variants is possible with this immunosensor.  相似文献   

9.
An immunosensor for determination of salbutamol was developed. It based on glass carbon electrode (GCE) modified with a conductive multilayer film comprised of multi-wall carbon nanotubes, polythionine and gold nanoparticles. Salbutamol antibody was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin (BSA). The stepwise self-assembly process of the immunosensor was studied by cyclic voltammetry. The detection scheme is based on competitive binding of salbutamol to the sensor surface whose differential pulse voltammetric signal decreases after competitive binding of the salbutamol-BSA conjugate and free salbutamol to the salbutamol antibody. The sensor responds to salbutamol in 5 to 150 nM concentration range, with a detection limit of 1 nM. This method was applied to the precise and sensitive determination of salbutamol in spiked feed samples.
Figure
In this work, we constructed a salbutamol immunosensor which was based on salbutamol-Ab adsorbed on the AuNPs/PTH/MWCNTs/GCE. Just as the procedures shown in Graph 1, competitive immunoreaction was the experimental principle. The percentage of current response of the immunosensor was proportional to salbutamol concentrations in the range of 5–150 nM.  相似文献   

10.
Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC–HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid–base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC–HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC–HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05–1.5 μmol?L?1, with a detection limit of 37.2 nmol?L?1 and RSD of 4.7 % (n?=?7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.
Figure
Iron oxide magnetic nanoparticles-based selective fluorescent response and magnetic separation probe for 2,4,6-trinitrotoluene  相似文献   

11.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

12.
We report on a sensitive, simple, label-free impedance-based immunoelectrode for the determination of microcystin-LR (MCLR). The surface of the electrode was modified with a composite made from multiwalled carbon nanotubes and an ionic liquid, and with immobilized polyclonal antibody against MCLR. Cyclic voltammetry and impedance spectroscopy were applied to characterize the modified electrode. It is found that the multi-walled carbon nanotubes act as excellent mediators for the electron transfer between the electrode and dissolved hexacyanoferrate redox pair, while the ionic liquid renders it biocompatible. The method exhibits a wide linear range (0.005 μg?L-1 to 1.0 μg?L-1), a low detection limit (1.7 ng?L-1) and a long-term stability of around 60 days. The ionic liquid 1-amyl-2,3-dimethylimidazolium hexafluorophosphate gave the best impedimetric response. The new immunoelectrode is sensitive, stable, and easily prepared. It has been successfully applied to the determination of MCLR in water samples.
Figure
The immunosensor, modified with a nanocomposite of room temperature ionic liquid- multiwalled carbon nanotube, was applied to detect MCLR. The method exhibits a wide linear range (0.005 μg·L?1 to 1.0 μg·L?1), a low detection limit (1.7 ng·L-1) and a long-term stability of around 60 days.  相似文献   

13.
An immunosensor was prepared for the determination of carcinoembryonic antigen (CEA). It is based on the use of multiwalled carbon nanotubes (MWCNTs) along with horseradish peroxidase-labeled antibody. The enzyme was assembled onto MWCNTs templates using the layer-by-layer technique and then conjugated to carcinoembryonic secondary antibodies (Ab2) as the enzyme label. The resulting assembly results in a largely amplified sensitivity. The response is linear in the range of 0.05 to 45?ng?mL-1, with a detection limit of 16.0?pg?mL-1. The immunosensor possesses good stability and good reproducibility.
Figure
A new immunosensor with double-layer enzyme-modified carbon nanotubes as label for sandwich-type tumor markers was proposed in this study  相似文献   

14.
We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng?mL?1, with a detection limit as low as 67 pg?mL?1. The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays.
Figure
?  相似文献   

15.
An analytical method using high-performance liquid chromatography–tandem mass spectrometry was developed to determine internal concentrations of 34 test compounds such as pharmaceuticals and pesticides in zebrafish embryos (ZFE), among them, cimetidine, 2,4-dichlorophenoxyacetic acid, metoprolol, atropine and phenytoin. For qualification and quantification, multiple reaction monitoring mode was used. The linear range extends from 0.075 ng/mL for thiacloprid and metazachlor and 7.5 ng/mL for coniine and clofibrate to 250 ng/mL for many of the test compounds. Matrix effects were strongest for nicotine, but never exceeded ±20 % for any of the developmental stages of the ZFE. Method recoveries ranged from 90 to 110 % from an analysis of nine pooled ZFE. These findings together with the simple sample preparation mean this approach is suitable for the determination of internal concentrations from only nine individual ZFE in all life stages up to 96 h post-fertilization. Exemplarily, the time course of the internal concentrations of clofibric acid, metribuzin and benzocaine in ZFE was studied over 96 h, and three different patterns were distinguished, on the basis of the speed and extent of uptake and whether or not a steady state was reached. Decreasing internal concentrations may be due to metabolism in the ZFE.
Figure
Quantification of polar pollutants in different life stages of the zebrafish embryo by LC-MS/MS  相似文献   

16.
We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL?1), with a detection limit of 60 pg·mL?1 (S/N?=?3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility.
Figure
We described a sensitive electrochemical immunosensor for the detection of the carcinoembryonic antigen. It was based on the use of a glassy carbon electrode modified with a multi-layer films made from Prussian blue, graphene, and carbon nanotubes by electrodeposition and assembling techniques. The immunosensor exhibited good precision and acceptable stability and has been applied to analyze clinical sample with a satisfactory result.  相似文献   

17.
A simple and sensitive capillary zone electrophoresis (CZE) with UV detection (214 nm) was developed and validated for the simultaneous determination of the acetylcholinesterase inhibitors (AChEI), donepezil, and rivastigmine, with antipsychotic drugs in plasma. A sample pretreatment by liquid–liquid extraction and subsequent quantification by CZE with field-amplified sample injection (FASI) was used. The optimum separation for these analytes was achieved in <20 min at 25 °C with a fused-silica capillary column of 60.2 cm?×?50 μm I.D. (effective length 50 cm) and a run buffer containing 120 mM phosphate (pH 4.0) with 0.1 % γ-cyclodextrin, 40 % methanol (MeOH), and 0.02 % polyvinyl alcohol as a dynamic coating to reduce analytes’ interaction with the capillary wall. Using phenformin as an internal standard (40.0 ng/mL), the linear ranges of the proposed method for the simultaneous determination of donepezil, rivastigmine, aripiprazole, quetiapine, risperidone, clozapine, ziprasidone, and trazodone were over the range 4.0–80.0 ng/mL, and olanzapine was over the range 1.0–20.0 ng/mL. The method was applied for concentrations monitoring of AChEIs and antipsychotic drugs in ten Alzheimer’s disease patients with behavioral and psychological symptoms of dementia after oral administration of the commercial products.
Figure
Electropherogram of tested chemicals in plasma determinations  相似文献   

18.
Relying on recent developments in proton transfer reaction mass spectrometry (PTR-MS), we demonstrate here the capability of detecting solid explosives in air and in water in real time. Two different proton transfer reaction mass spectrometers have been used in this study. One is the PTR-TOF 8000, which has an enhanced mass resolution (mm up to 8,000) and high sensitivity (~50 cps/ppbv). The second is the high-sensitivity PTR-MS, which has an improved limit of detection of about several hundreds of parts per quadrillion by volume and is coupled with a direct aqueous injection device. These instruments have been successfully used to identify and monitor the solid explosive 2,4,6-trinitrotoluene (TNT) by analysing on the one hand the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces (also demonstrating the usefulness of a simple pre-concentration and thermal desorption technique) and by analysing on the other hand trace compounds in water down to a level of about 100 pptw. The ability to identify even minute amounts of threat compounds, such as explosives, particularly within a complex chemical environment, is vital to the fight against crime and terrorism and is of paramount importance for the appraisal of the fate and harmful effects of TNT at marine ammunition dumping sites and the detection of buried antipersonnel and antitank landmines.
Figure
Detecting TNT vapour with a high resolution PTR-TOF  相似文献   

19.
We present two kinds of electrochemical immunoassays for the tumor necrosis factor α (TNF-α) which is a protein biomarker. The antibody against TNF-α was immobilized on a graphite screen-printed electrode modified with poly-anthranilic acid (ASPE). The first is based on impedimetry (and thus label-free) and the target antigen (TNF-α) is captured by the surface of the modified electrode via an immunoreaction upon which impedance is changed. This sensing platform has a detection limit of 5.0 pg mL?1. In the second approach, the monoclonal antibodies on the modified electrode also bind to the target antigen (TNF-α), but detection is based on a sandwich immunoreaction. This is performed by first adding secondary anti-TNF-α antibodies labeled with horseradish peroxidase, and then detecting the response of the sandwich system by adding hydrogen peroxide and acetaminophen as a probe system for HRP activity. This immunosensor also has a very low detection limit (3.2 pg mL?1). The experimental conditions of both assays were studied and optimized via electrochemical impedance spectroscopy and differential pulse voltammetry. The method was then applied to the determination of TNF-α in serum samples where it displayed high sensitivity, selectivity and reproducibility.
Figure
A novel electrochemical immunosensor capable of sensitive and selective detection of tumor necrosis factor α is developed. It is based on the poly-anthranilic acid modified graphite screen-printed electrodes. Validation was made by analyzing human serum.  相似文献   

20.
We describe a method for single drop microextraction of manganese from fish, mollusk, and from natural waters using the reagent 1-(2-pyridylazo)-2-naphthol as the complexing agent and chloroform as the fluid extractor. After extraction, the analyte was directly submitted to graphite furnace electrothermal atomic absorption spectrometry. Once optimized, the method has a detection limit of 30 ng L?1, a limit of quantification of 100 ng L?1, and an enrichment factor of 16. Its accuracy was verified by applying the procedure to the following certified reference materials: apple leaves, spinach leaves, bovine liver, and mussel tissue. The procedure was also successfully applied to the determination of manganese in seafood and natural waters.
Figure
Preconcentration system using single-drop microextraction for the determination of manganese  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号