首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the potential of a quartz crystal microbalance with dissipation monitoring (QCM-D) to provide a sensitive, label-free method for detecting the conformational rearrangement of glycoprotein gp120 upon binding to different ligands. This glycoprotein is normally found on the envelope of the HIV-1 virus and is involved in viral entry into host cells. It was immobilized on the surface of the sensing element of the QCM-D and was exposed to individual solutions of several different small-molecule inhibitors as well as to a solution of a soluble form of the host cell receptor to which gp120 binds. Instrument responses to ligand-triggered changes were in qualitative agreement with conformational changes as suggested by other biophysical methods.
Figure
Graphic to accompany the on-line abstract for "Use of the quartz crystal microbalance to monitor ligand-induced conformational rearrangements in HIV-1 envelope protein gp120," by Hyun-Su Lee, Mark Contarino, M. Umashankara, Arne Schön, Ernesto Freire, Amos B. Smith, III, Irwin M. Chaiken, and Lynn S. Penn  相似文献   

2.
Molecularly imprinted polymers (MIPs) are synthetic receptors that are able to specifically bind their target molecules in complex samples, making them a versatile tool in biosensor technology. The combination of MIPs as a recognition element with quartz crystal microbalances (QCM-D with dissipation monitoring) gives a straightforward and sensitive device, which can simultaneously measure frequency and dissipation changes. In this work, bulk-polymerized l-nicotine MIPs were used to test the feasibility of l-nicotine detection in saliva and urine samples. First, l-nicotine-spiked saliva and urine were measured after dilution in demineralized water and 0.1× phosphate-buffered saline solution for proof-of-concept purposes. l-nicotine could indeed be detected specifically in the biologically relevant micromolar concentration range. After successfully testing on spiked samples, saliva was analyzed, which was collected during chewing of either nicotine tablets with different concentrations or of smokeless tobacco. The MIPs in combination with QCM-D were able to distinguish clearly between these samples: This proves the functioning of the concept with saliva, which mediates the oral uptake of nicotine as an alternative to the consumption of cigarettes.
Figure
Schematics of the sample-preparation procedure for l-nicotine spiked saliva- and urine samples with various concentration levels  相似文献   

3.
The role of three membrane proteins in altering the diffusion and clustering of integrin receptors has been measured. Integrins are membrane proteins responsible for integrating intracellular and extracellular signaling events and anchoring cells to the extracellular matrix. The methodology used to elucidate the role of other membrane proteins in altering integrin diffusion and clustering combines fluorescence microscopy with RNA interference (RNAi), which is a technique to reduce the expression of a target protein. The three RNAi-targeted membrane proteins were epidermal growth factor receptor (EGFR), platelet-derived growth factor/vascular endothelial growth factor-related receptor (Pvr), and Notch. Real-time polymerase chain reaction or quantitative immunocytochemistry was used to measure a reduction in mRNA or protein concentration after RNAi treatment, respectively. Fluorescence recovery after photobleaching showed that reducing the concentration of EGFR or Notch results in less constrained integrin diffusion and, in the case of Notch RNAi, 4?% more mobile integrins. Fluorescence resonance energy transfer measurements performed before and after RNAi treatments indicate that clustering decreases for wild-type integrin, but increases for a high-ligand-affinity integrin mutant after reducing the expression of EGFR, Pvr, or Notch. A model to explain the measured changes after reducing the expression of these three membrane proteins involving cholesterol-enriched nanodomains is proposed.
Figure
A combination of fluorescence microscopy and RNAi interference were used to measure how selectively reducing the expression of one membrane protein affects clustering and diffusion of another membrane protein  相似文献   

4.
Kinases play a key role in cellular signaling, and the overactivation or overexpression of these kinases has been linked to a variety of cancers. Tyrosine kinase inhibitors treat the mechanism of these cancers by targeting the specific kinases that are overactive. Some patients, however, do not respond to these inhibitors or develop resistance to these inhibitors during treatment. Additionally, even within cancers of the same tissue type, different kinases may be overactive in different patients. For example, some lung cancers overexpress epidermal growth factor receptor (EGFR) and respond to EGFR inhibitors, whereas other lung cancers do not overexpress EGFR and receive no benefit from this treatment. Even among patients exhibiting EGFR overexpression, some do not respond to EGFR kinase inhibitors because other kinases, such as Met kinase, are also overactivated. Here we describe a quantitative and specific multiplexed microfluidic assay using a hydrogel immobilized substrate for measuring the kinase activity of Met and Abl kinase from cancer cells. We immobilized kinase-specific substrates on macroporous hydrogel micropillars in microchannels. These microchannels were incubated with 6 μl of a kinase reaction solution containing cancer cell lysate, and we measured kinase activity via fluorescence detection of a phosphotyrosine antibody. We showed that the assay can specifically measure the activity of both Met and Abl kinase within one microchannel and has the potential to measure the activity of as many as five kinases within one microchannel. The assay also detected Met kinase inhibition from lysates of cancer cells grown in the Met kinase inhibitor PHA665752.
Figure
Kinase specific substrates are incubated in microchannels containing micropillars and become covalently bound to these micropillars. Cell lysate is then incubated in the microchannel where, if the lysate contains the specific kinase, it will phosphorylate the kinase specific substrates  相似文献   

5.
Integrins are ubiquitous adhesion receptors that are important for signaling and integrating the extracellular matrix and cytoskeleton. The role of cytoplasmic proteins vinculin, focal adhesion kinase (FAK), integrin-linked kinase (ILK), and membrane proteins epidermal growth factor receptor (EGFR) and Notch in altering αPS2CβPS integrin lateral diffusion was measured using single particle tracking (SPT) and RNA interference (RNAi). SPT measures heterogeneous diffusion properties, and RNAi selectively reduces the concentration of a target protein. After systematically reducing the concentration of vinculin, FAK, ILK, EGFR, or Notch, there was a 31 to 80 % increase in the mobile integrin fraction, indicating that these five targeted proteins (or assemblies that contain these proteins) are responsible for immobilizing a fraction of the integrins when all proteins are present at native concentrations. The average diffusion coefficient of all mobile integrins did not change after any of the RNAi treatments, and the percentage of Brownian, directed, or anomalous/constrained trajectories relative to total mobile trajectories did not change after vinculin or EGFR RNAi. However, the fraction of anomalous/constrained trajectories relative to the total mobile trajectories increased 9 to 19 % after FAK, ILK, and Notch RNAi, when the concentration of these proteins was reduced. In the case of FAK, ILK, and Notch, native concentrations of these proteins simultaneously increase the immobile fraction of integrins but decrease the diffusion constraints to those integrins that remain mobile. Comparisons of single receptor and ensemble measurements of diffusion and what is known about the effect of these proteins in altering integrin clustering are discussed.
Figure
Membrane and Cytoplasmic proteins that affect the heterogeneous diffusion properties of integrin receptors can be elucidated using RNA interference to reduce the concentration of a single protein combined with single particle tracking measurements at native or reduced protein concentrations. Trajectories exhibit directed, Brownian, or anomalous motion; there is also a fraction of immobile receptor.  相似文献   

6.
A straightforward and visual method to assess inhibitors on protein tyrosine kinases (PTKs) and phosphatases (PTPs) has been developed. These enzymes play critical roles in a number of diseases and, thus, their inhibitors are important for effective therapy. With the use of the long-life luminescence emitted from a binuclear Tb(III) complex, enzymatic reactions of PTKs and PTPs were monitored in real-time, and the inhibitor activity was quantitatively evaluated in terms of the decrease in the rate of luminescence change. No conjugation of the probe to a substrate peptide was necessary. The IC50 values of four inhibitors on three kinds of PTKs [Src, Fyn, and epidermal growth factor receptor (EGFR)] were determined. For example, gefitinib, which is a selective inhibitor on EGFR, inhibited this PTK with IC50 of 22 nM. Towards Src and Fyn (non-targeted PTK), however, IC50 of this inhibitor was greater than 20 μM as expected. Inhibition of two kinds of PTPs (Shp-1 and PTP1B) by two inhibitors was also assayed, providing completely consistent results on their known selectivity. Furthermore, the system where both PTK and PTP are active was monitored and the reactions were visualized with the present Tb(III) complex-based method. High potential of the present method to a variety of systems has been evidenced.
Figure
?  相似文献   

7.
8.
We describe a new method for the visualization of the activity of red-ox proteins on a gold interface. Glucose oxidase was selected as a model system. Surfaces were modified by adhesion of glucose oxidase on (a) electrochemically cleaned gold; (b) gold films modified with gold nanoparticles, (c) a gold surface modified with self-assembled monolayer, and (d) covalent immobilization of protein on the gold surface modified with a self-assembled monolayer. The simple optical method for the visualization of enzyme on the surfaces is based on the enzymatic formation of polypyrrole. The activity of the enzyme was quantified via enzymatic formation of polypyrrole, which was detected and investigated by quartz microbalance and amperometric techniques. The experimental data suggest that the enzymatic formation of the polymer may serve as a method to indicate the adhesion of active redox enzyme on such surfaces.
Figure
An optical method for the evaluation of activity and distribution of glucose oxidase on the different surfaces was described. The enzymatic synthesis of polypyrrole (black colour) was successfully applied for the visualization of active enzyme on the surfaces.  相似文献   

9.
The trapping or immobilization of individual cells at specific locations in microfluidic platforms is essential for single cell studies, especially those requiring cell stimulation and downstream analysis of cellular content. Selectivity for individual cell types is required when mixtures of cells are analyzed in heterogeneous and complex matrices, such as the selection of metastatic cells within blood samples. Here, we demonstrate a microfluidic device based on direct current (DC) insulator-based dielectrophoresis (iDEP) for selective trapping of single MCF-7 breast cancer cells from mixtures with both mammalian peripheral blood mononuclear cells (PBMC) as well MDA-MB-231 as a second breast cancer cell type. The microfluidic device has a teardrop iDEP design optimized for the selective capture of single cells based on their differential DEP behavior under DC conditions. Numerical simulations adapted to experimental device geometries and buffer conditions predicted the trapping condition in which the dielectrophoretic force overcomes electrokinetic forces for MCF-7 cells, whereas PBMCs were not trapped. Experimentally, selective trapping of viable MCF-7 cells in mixtures with PBMCs was demonstrated in good agreement with simulations. A similar approach was also executed to demonstrate the selective trapping of MCF-7 cells in a mixture with MDA-MB-231 cells, indicating the selectivity of the device for weakly invasive and highly invasive breast cancer cells. The DEP studies were complemented with cell viability tests indicating acceptable cell viability over the course of an iDEP trapping experiment.
Figure
?  相似文献   

10.
We report on a novel nanoarchitecture for use in highly bioactive electrochemical biosensors. It consists of multilayers of nanostructured plasma-polymerized pyrrole (ppPY) and nanosheets of electrically conductive graphene. The ppPY films were deposited by plasma-enhanced chemical vapor deposition on a graphene surface to form nanostructured composites (G-ppPY). The G-ppPY films were then coated with protein (BSA as a model) by adsorption, and then with DNA. The adsorption of protein and DNA on the nanocomposite was studied by electrochemical impedance spectroscopy and with a quartz crystal microbalance. Results demonstrated that the adsorption of biomolecules on G-ppPY films causes a higher variation in its electrochemical properties and adsorbed amount than that on a plain ppPY surface. This indicates that the presence of graphene can enhance the electrochemical activity of ppPY without reducing the sensitivity of biomolecular adsorption.
Figure
A novel nanoarchitecture is developed for use in highly bioactive electrochemical biosensors, which is composed of multilayers of nanostructured plasma-polymerized pyrrole and electrically conductive graphene nanosheets. The presence of graphene can enhance the electrochemical activity of ppPY without reducing the sensitivity of biomolecular adsorption.  相似文献   

11.
We have prepared a surface imprinted polymer (SIP) film for label-free recognition of immunoglobulin G (IgG). The IgG-SIPs were obtained by covalent immobilization of IgG via a cleavable covalent bond and a suitable spacer unit to a gold electrode, followed by electrodepostion of a nm-thin film of polydopamine (PDA). The IgG was then removed by destruction of the cleavable bond so that complementary binding sites were created on the surface of the film. IgG-SIPs with various thicknesses of the PDA films were compared with respect to their affinity to IgG using a quartz crystal microbalance combined with flow injection analysis. The films were also characterized by cyclic voltammetry and scanning electron microscopy. The IgG-SIPs with a film thickness of around 17 nm showed the most pronounced imprinting effect (IF 1.66) and a binding constant of 296 nM.
Figure
A strategy for preparation of the IgG-Surface Imprinted Polymeric (IgG-SIP) thin films was developed. IgG was covalently immobilized via a cleavable cross-linker to a gold electrode surface followed by electrochemical deposition of a nanometer thin PDA film. After cleaving S-S bond in the linker the IgG was removed leaving behind the complementary binding sites confined in the surface of the polymer film. The prepared IgG-SIPs were applied for IgG recognition.  相似文献   

12.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

13.
We have examined the specificity of electrosynthesized poly-o-phenylenediamine as a kind of material molecularly imprinted with metal chelates. Molecularly imprinted polymers (MIPs) were prepared in situ by an electrochemical method. The EDTA chelate complexes of Cu(II), Zn(II), Fe(III) and Cd(II) ions were used as templates of the MIPs deposited on a gold electrode of a quartz crystal microbalance (QCM). The binding ability and specificity of the MIPs were investigated via the frequency response of the QCM to the adsorption of the template chelates and their analogs. Linear relationships are observed between the frequency shift and the concentration of the template chelates over a typical range of ~10?6 to ~10?4?mol·L?1. The results reveal good binding specificity of such MIPs for their templates over structurally related analogs, but the selectivity coefficients are less significant than that for enantiomers. The results also suggest no significant correlation between binding specificity and the ionic (or atomic) radius of the investigated metal ions. The observed specificity is qualitatively attributed to the overall conformational difference of the metal-EDTA complexes resulting from their difference in both ionic radius and electronic structures.
Figure
Schematic Representation of the Molecular Imprinting Procedures. The metal ions chelate with EDTA to form metal-EDTA chelates as the template, then polymerization is initiated by an electrochemical method. After the polymerization, the templates are removed to create cavities in the polymer film which have binding ability and specificity to the templates.  相似文献   

14.
We have developed a piezoelectric sensor for the determination of atrazine. It is based on the modification of a molecularly imprinted film of TiO2 that was placed on a quartz crystal via a surface sol?Cgel process. The resulting sensor exhibits high selectivity for atrazine, a re-usability that is better than that of other sensors, a response time of 3?min, a wider linear range (0.0005?C8?mM), and a lower detection limit (0.1???M). The analytical application of the atrazine sensor confirms the feasibility of atrazine determination.
Graphical abstract
The response of QCM electrodes prepared by various methods to atrazine (pH 5.0).  相似文献   

15.
We have investigated the response of normal and cancer cells to exposure a combination of celecoxib (Celbx) and 5-fluorouracil (5-FU) using a lab-on-a-chip microfluidic device. Specifically, we have tested the cytotoxic effect of Celbx on normal mouse embryo cells (Balb/c 3T3) and human lung carcinoma cells (A549). The single drugs or their combinations were adjusted to five different concentrations using a concentration gradient generator (CGG) in a single step. The results suggest that Celbx can enhanced the anticancer activity of 5-FU by stronger inhibition of cancer cell growth. We also show that the A549 cancer cells are more sensitive to Celbx than the Balb/c 3T3 normal cells. The results obtained with the microfluidic system were compared to those obtained with a macroscale in vitro cell culture method. In our opinion, the microfluidic system represents a unique approach for an evaluation of cellular response to multidrug exposure that also is more simple than respective microwell plate assays.
Figure
?  相似文献   

16.
We have developed a one-step method for the synthesis of mesoporous upconverting nanoparticles (MUCNs) of the type NaYF4:Yb,Er@mSiO2 in ammoniacal ethanol/water solution. The mesoporous silica is directly encapsulating the hydrophobic upconversion nanoparticles (UCNs) due to the presence of the template CTAB. Intense green emission (between 520 and 560 nm) and weaker red emission (between 630 and 670 nm) is observed upon 980-nm laser excitation. The MUCNs display low cytotoxicity (as revealed by an MTT test) and were successfully applied to label and image human nasopharyngeal epidermal carcinoma (KB) cells.
Figure
A facile one-step method was proposed for direct formation of core-shell mesoporous silica coated upconverting nanoparticles (MUCNs), NaYF4:Yb,Er@mSiO2, in an ammonia and ethanol aqueous solution and the obtained MUCNs were successfully applied to bioimaging of living cells.  相似文献   

17.
The increase in the incidence of neurodegenerative diseases linked to aging or injury needs to be addressed in research into neuroprotective or neuroregenerative therapies, and requires the development of specific biological models. To achieve this goal we propose (1) the use of the mouse olfactory epithelium as a biological support which specifically exhibits a regenerative or a self-renewing capacity and during the lifetime necessitates the presence of neural stem cells, and (2) the use of an intraperitoneal injection of 2,6-dichlorobenzonitrile (diclobenil) as a chemical inducer of neurodegeneration in olfactory epithelium by selectively killing mature cells. We developed a biological model to follow the processes of neurodegeneration (chemically induced) and neuroregeneration (self-renewal of olfactory epithelium). The purpose of this study was to develop a method to monitor quickly neurodegeneration/neuroregeneration processes in order to further screen protective and regenerative therapies. For this purpose, we used the sedimentation field flow fractionation elution of olfactory epithelium. We obtained specific elution profiles and retention parameters allowing the monitoring of the induction and kinetics of biological processes. The use of insulin-like growth factor 1α as a neuroprotective agent in an innovative nebulization protocol showed sedimentation field flow fractionation to be a simple, fast and low-cost method to monitor such a biological event on the scale of an entire organism.
Figure
?  相似文献   

18.
We report a simple, cost-effective, and label-free detection method, consisting of a platelet-derived growth factor (PDGF) binding aptamer and hydrophobic Ru(II) complex as a sensor system for PDGF. The binding of PDGF with the aptamer results in the weakening of the aptamer–Ru(II) complex, monitored by luminescence signal. A substantial enhancement in the luminescence intensity of Ru(II) complex is observed in the presence of aptamer due to the hydrophobic interaction. Upon addition of PDGF, the luminescence intensity is decreased, due to the stronger interaction between the aptamer and PDGF resulting in the displacement of Ru(II) complex to the aqueous solution. Our assay can detect a target specifically in a complex medium such as the mixture of proteins, at a concentration of 0.8 pM.
Figure
?  相似文献   

19.
The history of the International Pharmaceutical Federation, founded in 1912, is traced from its origins in the series of International Pharmaceutical Congresses starting in 1865. The initiating event took place in the 6th Congress held in 1885 in Brussels, followed by the foundation after the 10th Congress, held in 1910, once again in Brussels.
Figure
?  相似文献   

20.
Heterogeneity of cell populations in various biological systems has been widely recognized, and the highly heterogeneous nature of cancer cells has been emerging with clinical relevance. Single-cell analysis using a combination of high-throughput and multiparameter approaches is capable of reflecting cell-to-cell variability, and at the same time of unraveling the complexity and interdependence of cellular processes in the individual cells of a heterogeneous population. In this review, analytical methods and microfluidic tools commonly used for high-throughput, multiparameter single-cell analysis of DNA, RNA, and proteins are discussed. Applications and limitations of currently available technologies for cancer research and diagnostics are reviewed in the light of the ultimate goal to establish clinically applicable assays.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号