首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method termed dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detection (HPLC-VWD) was developed. DLLME-HPLC-VWD is a method for determination of bisphenol A (BPA) in water samples. In this microextraction method, several parameters such as extraction solvent volume, sample volume, disperser solvent, ionic strength, pH, and disperser volume were optimised with the aid of interactive orthogonal array and a mixed level experiment design. First, an orthogonal array design was used to screen the significant variables for the optimisation. Second, the significant factors were optimised by using a mixed level experiment. Under the optimised extraction conditions (extraction solvent: ionic liquid [C6MIM][PF6], 60 µL; dispersive solvent: methanol, 0.4 mL; and pH = 4.0), the performance of the established method was evaluated. The response linearity of the method was observed in a range of 0.002–1.0 mg L?1 (three orders of magnitude) with correlation coefficient (R 2) of 0.9999. The repeatability of this method was 4.2–5.3% for three different BPA levels and the enrichment factors were above 180. The extraction recovery was about 50% for the three different concentrations with 3.4–6.4% of RSD. Limit of detection of the method was 0.40 µg L?1 at a signal-to-noise ratio of 3. In addition, the relative recovery of sample of Songhua River, tap water and barrel-drain water at different spiked concentration levels was ranged 95.8–103.0%, 92.6–98.6% and 87.2–95.3%, respectively. Compared with other extraction technologies, there have been the following advantages of quick, easy operation, and time-saving for the present method.  相似文献   

2.
3.
4.
An HPLC–PDA fingerprint method has been developed for quality control of Panax notoginseng flowers. HPLC separation was performed at 35 °C on a Hypersil ODS column (4.6 mm × 250 mm, 5 μm); the mobile phase was an acetonitrile–water gradient at a flow rate of 1.0 mL/min. Satisfactory separation of 19 common peaks was achieved within 60 min. Similarity evaluation was performed by use of the professional software “Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine”, and the similarity among 12 batches of samples was no less than 0.93. Results of similarity evaluation confirmed that the quality of P. notoginseng flowers was stable, and that fingerprint analysis enabled precise and efficient quality control of P. notoginseng flowers.  相似文献   

5.
Dispersive liquid–liquid microextraction (DLLME) high-performance liquid chromatography (HPLC) was developed for extraction and determination of triazines from honey. A room temperature ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6.], was used as extraction solvent and Triton X 114 was used as dispersant. A mixture of 175 μL [C6MIM][PF6] and 50 μL 10% Triton X 114 was rapidly injected into the 20 mL honey sample by syringe. After extraction, phase separation was performed by centrifugation and the sedimented phase was analyzed by HPLC. Some experimental parameters, such as type and volume of extraction solvent, concentration of dispersant, pH value of sample solution, salt concentration and extraction time were investigated and optimized. The detection limits for chlortoluron, prometon, propazine, linuron and prebane are 6.92, 5.84, 8.55, 8.59 and 5.31 μg kg−1, respectively. The main advantages of the proposed method are simplicity of operation, low cost, high enrichment factor and extraction solvent volume at microliter level. Honey samples were analyzed by the proposed method and obtained results indicated that the proposed method provides acceptable recoveries and precisions.  相似文献   

6.
A novel method based on the strategy of N-phosphorylation labeling is described for quantification of twenty natural amino acids in human serum by reversed-phase liquid chromatography–electrospray tandem mass spectrometry (RP-LC/ESI-MS). The derivatization reaction was easily performed in one-pot reaction under mild conditions within 30 min. The reaction mixture was then evaporated to dryness, redissolved, desalted by C18 SPE. The twenty N-phosphoryl amino acids were separated on an RP-C18 column within 20 min by isocratic elution (0.1% formic acid–acetonitrile, v/v 7:3). At the same time, multiple reaction monitoring (MRM) MS enabled quantitation of twenty natural amino with the LOD of 0.0005–0.15 μM and LOQ of 0.0020–0.5 μM in human serum. The linear range was from 0.025 to 25 μM (except Cys and Trp) with R > 0.99. The recovery range was determined to be 85.5–117.4% with the relative standard deviation (RSD) in the range of 1.3–13.9%. All twenty amino acids were successfully detected in human serum samples with the concentration from 5.7 to 577.9 μM, which indicates potential of the developed method for determination of amino acids in complex biological samples, hence for screening of amino acid metabolite related diseases.  相似文献   

7.
A simple and rapid technique based on salting out assisted solvent extraction was developed for extraction of atorvastatin from serum sample and high performance liquid chromatography–UV was used for its detection. In the present study, 1.0 mL serum was extracted by 0.5 mL of acetonitrile and some parameters that can affect extraction such as type and volume of extraction solvent, type of salt, and pH were optimized. Under optimized experimental conditions, the calibration curve was found to be linear in the range of 0.001–10 ng mL−1 in human serum and the correlation coefficient (R2) and the limits of detection were >0.99 and 0.0005 ng mL−1, respectively. The accuracy of the method in terms of average recovery of the compound in spiked serum and water samples was better than 90%.  相似文献   

8.
Summary A new method has been developed for the HPLC determination of the activity of lactase from the microorganisms in yoghurt. The method is based upon the ability of -galactosidase to hydrolyze lactose bonds in glucose and galactose. To determine such activity in yoghurt, 1 mL of yoghurt was diluted 110 with 0.1 M phosphate buffer (pH 7) containing 2 % (w/v) lactose and 5 mM dithioerythritol as reducing agent; the mixture was the incubated and injected into the HPLC. Lactase activity remained high as long as the number of viable microorganisms did not fall below the minimum CFU·mL–1 (107). This method is more repeatable than conventional colorimetric determination, and may also be automated for routine analysis.  相似文献   

9.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   

10.
A method for the highly sensitive determination of 2-, 3- and 4-nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the integrated peak area of detector output was linear up to 300 mg/L and the detection limit was 150 µg/L. The sensitivity of this detection method was improved by pretreating the sample solutions with a solvent extraction procedure that makes use of the high partition coefficient of ethyl acetate (EA)/water system. To find an optimum condition for the extraction procedure, this process was simulated by plotting the concentration of nitrophenol extracted in organic solvent against the volume multiplication factor at various partition coefficient of solute. This simulation demonstrated that EA is a superior extractant to other organic solvents. With the newly developed method, the detection limit was extended to 0.3 µg/L. This method offers fast, reliable and more sensitive determination of nitrophenol isomers than any other HPLC method.  相似文献   

11.
A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 L phosphoric acid 1 mol L–1 at a controlled room temperature of 15°C for 20 min. The separation of acetaldehyde-DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C18 column, using methanol/LiCl(aq) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV–Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3–300 mg L–1 per injection (20 L) and the limit of detection (LOD) for acetaldehyde was 2.03 g L–1, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7–102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.  相似文献   

12.
A simple, rapid and inexpensive dispersive liquid–liquid microextraction based on solidification of organic drop combined with HPLC was developed for the extraction and determination of trace levels of 5-hydroxymethyl-2-furfural in fruit juice. Effect of variables such as extracting and dispersive solvent volume and pH were investigated simultaneously using experimental design. Under the optimum conditions, the calibration graph was linear in the range of 1?200 μg/L with the detection limit of 0.3 μg/L. The optimized method revealed a good precision with relative standard deviation of 2.2%.The performance of the method was evaluated for extraction and determination of 5-hydroxymethyl-2-furfural in orange juice sample.  相似文献   

13.
This paper describes a liquid chromatographic/tandem mass spectrometric (LC/MS–MS) method specifically designed for the screening of synthetic glucocorticosteroids in human urine. The method is designed to recognize a common mass spectral fragment formed from the particular portion of the molecular structure that is common to all synthetic glucocorticosteroids and that is fundamental to their pharmacological activity. As such, the method is also suitable for detecting unknown substances, provided they contain the portion of the molecular structure selected as the analytical target. The effectiveness of this approach was evaluated on seventeen synthetic glucocorticosteroids. Urine samples, including blank urines spiked with one or more synthetic glucocorticosteroids, were treated according to a standard procedure (enzymatic hydrolysis, liquid/liquid extraction and evaporation to dryness) and analyzed using LC/MS-MS with electrospray ionization (ESI). MS–MS acquisition was carried out in a precursor ion scan, and the results were compared with those obtained by a previously developed reference technique based on acquisition in the multiple reaction monitoring (MRM) mode. All of the glucocorticosteroids considered in this study are clearly detectable in urine, with a limit of detection in the concentration range 5–20 ng/mL, depending on the glucocorticosteroid structure. The proposed method is therefore suitable for the detection of glucocorticosteroids in urine samples taken for “in competition” sport anti-doping control tests, matching the requirements of the World Anti-Doping Agency (WADA) for accredited anti-doping laboratories. Figure Structures of the synthetic glucocorticoids considered in this study  相似文献   

14.
In the present study, a rapid, highly efficient and environmentally friendly sample preparation method named ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-USA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and preconcentration of four benzophenone-type ultraviolet (UV) filters (viz. benzophenone (BP), 2-hydroxy-4-methoxybenzophenone (BP-3), ethylhexyl salicylate (EHS) and homosalate (HMS)) from three different water matrices. The procedure was based on a ternary solvent system containing tiny droplets of ionic liquid (IL) in the sample solution formed by dissolving an appropriate amount of the IL extraction solvent 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM][FAP]) in a small amount of water-miscible dispersive solvent (methanol). An ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution, which markedly increased the extraction efficiency and reduced the equilibrium time. Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvents, ionic strength, pH and extraction time) were evaluated. Under optimal conditions, the proposed method provided good enrichment factors in the range of 354–464, and good repeatability of the extractions (RSDs below 6.3%, n = 5). The limits of detection were in the range of 0.2–5.0 ng mL−1, depending on the analytes. The linearities were between 1 and 500 ng mL−1 for BP, 5 and 500 ng mL−1 for BP-3 and HMS and 10 and 500 ng mL−1 for EHS. Finally, the proposed method was successfully applied to the determination of UV filters in river, swimming pool and tap water samples and acceptable relative recoveries over the range of 71.0–118.0% were obtained.  相似文献   

15.
The excretion of neurotransmitter metabolites in normal individuals is of great significance for health monitoring. A rapid quantitative method was developed with ultra-performance liquid chromatography–tandem mass spectrometry. The method was further applied to determine catecholamine metabolites vanilymandelic acid (VMA), methoxy hydroxyphenyl glycol (MHPG), dihydroxy-phenyl acetic acid (DOPAC), and homovanillic acid (HVA) in the urine. The urine was collected from six healthy volunteers (20–22 years old) for 10 consecutive days. It was precolumn derivatized with dansyl chloride. Subsequently, the sample was analyzed using triple quadrupole mass spectrometry with an electrospray ion in positive and multireaction monitoring modes. The method was sensitive and repeatable with the recoveries 92.7–104.30%, limits of detection (LODs) 0.01–0.05 μg/mL, and coefficients no less than 0.9938. The excretion content of four target compounds in random urine samples was 0.20 ± 0.086 μg/mL (MHPG), 1.27 ± 1.24 μg/mL (VMA), 3.29 ± 1.36 μg/mL (HVA), and 1.13 ± 1.07 μg/mL (DOPAC). In the urine, the content of VMA, the metabolite of norepinephrine and adrenaline, was more than MHPG, and the content of HVA, the metabolite of dopamine, was more than DOPAC. This paper detected the levels of catecholamine metabolites and summarized the characteristics of excretion using random urine samples, which could provide valuable information for clinical practice.  相似文献   

16.
This article describes a liquid chromatographic/tandem mass spectrometric method, based on the use of precursor ion scan as the acquisition mode, specifically developed to detect indole-derived cannabinoids (phenylacetylindoles, naphthoylindoles and benzoylindoles) in biological fluids (saliva, urine and blood). The method is designed to recognize one or more common “structural markers”, corresponding to mass spectral fragments originating from the specific portion of the molecular structure that is common to the aminoalkylindole analogues and that is fundamental for their pharmacological classification. As such, the method is also suitable for detecting unknown substances, provided they contain the targeted portion of the molecular structure.  相似文献   

17.
A solid-phase microextraction (SPME)–high-performance liquid chromatography (HPLC) approach is used, for the first time, to study the partitioning behavior of eight aromatic analytes to three imidazolium-based ionic liquid micelles, namely, 1-hexadecyl-3-methylimidazolium bromide (HDMIm-Br), 1-hexadecyl-3-butylimidazolium bromide (HDBIm-Br), and 1,3-didodecylimidazolium bromide (DDDDIm-Br). The model used to calculate the partition coefficients is improved by determining the accurate critical micelle concentration (CMC) value of the studied IL-micelles, which considers the nature and amount of organic modifier used in the experiments. Proper CMC values in the model improve the quality of the results and decrease the differences between theoretical and experimental intercepts. Surface tensiometry has been utilized to determine the CMC values for the micelles at different acetonitrile contents (1% and 1.5%, v/v). The calculated partition coefficient values for polycyclic aromatic hydrocarbons (PAHs) oscillate between 631 and 5980, whereas aromatic analytes with a lower number of fused rings in their structures suffer non-partitioning to any of the IL-micelles. The obtained partition coefficients to IL-micelles were highest with the DDDDIm-Br IL and were always higher than those obtained with the traditional surfactant cetyltrimethyl ammonium bromide (CTAB).  相似文献   

18.
A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 μm, 50 mm × 2.1 mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0–103.4%, with the RSD < 15%. The calibration curves for alkylphenols were linear within the range of 0.01–0.4 μg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 μg/kg.  相似文献   

19.
In this study we on-line coupled hollow fiber liquid–liquid–liquid microextraction (HF-LLLME), assisted by an ultrasonic probe, with high-performance liquid chromatography (HPLC). In this approach, the target analytes – 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4-dichlorophenol (3,4-DCP) – were extracted into a hollow fiber (HF) supported liquid membrane (SLM) and then back-extracted into the acceptor solution in the lumen of the HF. Next, the acceptor solution was withdrawn on-line into the HPLC sample loop connected to the HF and then injected directly into the HPLC system for analysis. We found that the chlorophenols (CPs) could diffuse quickly through two sequential extraction interfaces – the donor phase – SLM and the SLM – acceptor phase – under the assistance of an ultrasonic probe. Ultrasonication provided effective mixing of the extracted boundary layers with the bulk of the sample and it increased the driving forces for mass transfer, thereby enhancing the extraction kinetics and leading to rapid enrichment of the target analytes. We studied the effects of various parameters on the extraction efficiency, viz. the nature of the SLM and acceptor phase, the compositions of the donor and acceptor phases, the fiber length, the stirring rate, the ion strength, the sample temperature, the sonication conditions, and the perfusion flow rate. This on-line extraction method exhibited linearity (r2 ≥ 0.998), sensitivity (limits of detection: 0.03–0.05 μg L−1), and precision (RSD% ≤ 4.8), allowing the sensitive, simple, and rapid determination of CPs in aqueous solutions and water samples with a sampling time of just 2 min.  相似文献   

20.
In this study, a new device for semi-automated salt-assisted liquid–liquid extraction was designed and coupled with high-performance liquid chromatography (HPLC) to determine three aromatic hydrocarbons in aqueous samples. In order to evaluate the performance of the designed device, three aromatic hydrocarbons including 2-naphthol, naphthalene and anthracene were selected as model analytes. Sample solution, extraction solvent and salt solution using separate channels were transferred to a sample holder, respectively. These three components were mixed using a magnetic stirrer. After stirrer stopping, the aqueous and organic phases were separated and organic layer transferred to the injection loop of HPLC system. Optimization process was achieved using response surface methodology by Design-Expert software. A central composite design was used to optimize the main parameters including pH (A), stirrer time (B), organic solvent volume (C) and salt concentration (D). The limit of quantitation for 2-naphthol, naphthalene and anthracene was 15.0, 25.0 and 1.0 ng mL?1, respectively. Under the optimum conditions, obtained recoveries for three analytes were in the range of 76.0–96.2% with relative standard deviation less than 8.2%. The salt-assisted liquid–liquid extraction method using the proposed device has been successfully used for the analysis of real samples containing studied analytes in various matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号