首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine sulfation is a post‐translational modification of many secreted and membrane‐bound proteins. It governs protein‐protein interactions that are involved in leukocyte adhesion, hemostasis, and chemokine signaling. However, the intrinsic feature of sulfated protein remains elusive and remains to be delineated. This investigation presents SulfoSite, which is a computational method based on a support vector machine (SVM) for predicting protein sulfotyrosine sites. The approach was developed to consider structural information such as concerning the secondary structure and solvent accessibility of amino acids that surround the sulfotyrosine sites. One hundred sixty‐two experimentally verified tyrosine sulfation sites were identified using UniProtKB/SwissProt release 53.0. The results of a five‐fold cross‐validation evaluation suggest that the accessibility of the solvent around the sulfotyrosine sites contributes substantially to predictive accuracy. The SVM classifier can achieve an accuracy of 94.2% in five‐fold cross validation when sequence positional weighted matrix (PWM) is coupled with values of the accessible surface area (ASA). The proposed method significantly outperforms previous methods for accurately predicting the location of tyrosine sulfation sites. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

2.
Traditional methods for protein kinase (PK) assay are mainly based on use of 32P-labeled adenosine triphosphate (ATP); applications of such methods are, however, hampered by radioactive waste and short half-life of 32P-labeled ATP. Therefore non-radioactive methods, such as fluorescence detection techniques are good alternative. In this review, we describe the principles of four fluorescence techniques (fluorescence intensity endpoint measurement, fluorescence resonance energy transfer (FRET), fluorescence polarization (FP), and fluorescence lifetime imaging) and provide an overview of applications of these fluorescence detection techniques in protein kinase assay, underlining their relative advantages and limitations. Research trends in this field are also highlighted. Figure Schematic representation of kinase assay based on direct fluorescence polarization measurements. The fluorescent peptide, on phosphorylation by kinase, binds to a phosphospecific antibody, which leads to a high FP value  相似文献   

3.
Ma  Nan  Jiang  Wentao  Li  Ting  Zhang  Zhongqiang  Qi  Haizhi  Yang  Minghui 《Mikrochimica acta》2015,182(1-2):443-447
Microchimica Acta - We have developed a sensitive fluorescence assay for the protein biomarker mucin 1 (MUC1). It is based on the aggregation of functionalized carbon dots (CDs) in the presence of...  相似文献   

4.
5.
A method has been developed for selective detection of the zinc-deficient form of Cu, Zn superoxide dismutase (SOD1) in vitro. Zinc-deficient SOD1 mutants have been implicated in the death of motor neurons leading in amyotrophic lateral sclerosis (ALS or Lou Gerhig's disease). Thus, this method may have applicability for detecting zinc-deficient SOD1 mutants in human ALS patients samples as well as in a transgenic mouse model of ALS and in cultured motor neurons. We determined previously that structural analogs of 1,10 phenanthroline, which react specifically with Cu(I), react with the active Cu(I) of SOD1 when zinc is absent, but not when zinc is also bound, as evidenced by the fact that the reaction is inhibited by pretreatment of the enzyme with zinc. We report herein that bathocuproine, or its water-soluble derivative bathocuproine disulfonate, react with zinc-deficient SOD1 to form a complex which fluoresces at 734 nm when excited at 482 nm. Fluorescent intensity is concentration dependent, thus we propose to use fluorescent confocal microscopy to measure intracellular levels of zinc-deficient SOD1 in situ.  相似文献   

6.
Protein post-translational modifications (PTMs) are regulatory mechanisms carried out by different enzymes in a cell. Kinase catalyzed phosphorylation is one of the most important PTM affecting the protein activity and function. We have developed a single-label quenching resonance energy transfer (QRET) assay to monitor tyrosine phosphorylation in a homogeneous high throughput compatible format. Epidermal growth factor receptor (EGFR) induced phosphorylation was monitored using Eu3+-chelate labeled peptide and label-free phosphotyrosine specific antibody in presence of a soluble quencher molecule. In the QRET kinase assay, antibody binding to phosphorylated Eu3+-peptide protects the Eu3+-chelate from luminescence quenching, monitoring high time-resolved luminescence (TRL) signals. In the presence of specific kinase inhibitor, antibody recognition and Eu3+-chelate protection is prevented, allowing an efficient luminescence quenching. The assay functionality was demonstrated with a panel of EGFR inhibitors (AG-1478, compound 56, erlotinib, PD174265, and staurosporine). The monitored IC50 values ranged from 0.08 to 155.3 nM and were comparable to those found in the literature. EGFR activity and inhibition assays were performed using low nanomolar enzyme and antibody concentration in a 384-well plate format, demonstrating its compatibility for high throughput screening (HTS).  相似文献   

7.
Synthesis of sulfated and unsulfated (glyco)peptide fragments of Hirudin P6 (a potent anticoagulant from the leech Hirudinaria manillensis) is described. The effect of O-glycosylation and tyrosine sulfation on thrombin binding and peptidolytic activity was investigated, together with the inhibition of fibrinogen cleavage.  相似文献   

8.
Protein kinases comprise one of the most important group of targets for drug discovery research today. Methods to identify novel kinase inhibitors by high-throughput screening have evolved rapidly in recent years. An important aspect is the availability of fluorescent probes that can be applied in a homogeneous, or mix-and-measure, assay format. Here, we illustrate the application of fluorescence read-out technologies for kinase targets in light of our own experiences in assay development and high-throughput screening.  相似文献   

9.
A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. D-Tyrosine was used for the control. alpha-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.  相似文献   

10.
11.
In oxygenic photosynthesis, photosystem II (PSII) carries out the oxidation of water and reduction of plastoquinone. Three PSII subunits contain reactive groups that covalently bind amines and phenylhydrazine. It has been proposed that these reactive groups are carbonyl-containing, co- or post-translationally modified amino acids. To identify modified amino acid residues in one of the PSII subunits (CP47), tandem mass spectrometry was performed. Modified residues were affinity-tagged with either biotin-LC-hydrazide or biocytin hydrazide, which are known to label carbonyl groups. The affinity-tagged subunit was isolated by denaturing gel electrophoresis, and tryptic peptides were then subjected to affinity purification and tandem mass spectrometry. This procedure identified a hydrazide-labeled peptide, which has the sequence XKEGR. This result is supported by quantitative results acquired from peptide mapping and methylamine labeling. The gene sequence and these tandem data predict that the first amino acid, X, which is labeled with the hydrazide reagent, is a modified form of aspartic acid. On the basis of these data, we propose that D348 of the CP47 subunit is post- or co-translationally modified to give a novel amino acid side chain, aspartyl aldehyde.  相似文献   

12.
Peng J  Gong L  Si K  Bai X  Du G 《Molecules (Basel, Switzerland)》2011,16(12):10709-10721
A disintegrin and metalloprotease with thrombospondin type I motifs-1 (ADAMTS1) plays a crucial role in inflammatory joint diseases and its inhibitors are potential candidates for anti-arthritis drugs. For the purposes of drug discovery, we reported the development and validation of fluorescence resonance energy transfer (FRET) assay for high-throughput screening (HTS) of the ADAMTS1 inhibitors. A FRET substrate was designed for a quantitative assay of ADAMTS1 activity and enzyme kinetics studies. The assay was developed into a 50-μL, 384-well assay format for high throughput screening of ADAMTS1 inhibitors with an overall Z' factor of 0.89. ADAMTS1 inhibitors were screened against a diverse library of 40,960 total compounds with the established HTS system. Four structurally related hits, naturally occurring compounds, kuwanon P, kuwanon X, albafuran C and mulberrofuran J, extracted from the Chinese herb Morus alba L., were identified for further investigation. The results suggest that this FRET assay is an excellent tool, not only for measurement of ADAMTS1 activity but also for discovery of novel ADAMTS1 inhibitors with HTS.  相似文献   

13.
The use of fluorescence polarization (FP) has increased significantly in the development of sensitive and robust assays for high throughput screening of chemical compound libraries during the past few years. In this study, we show that FP is a useful assay miniaturization technology for reagent reduction during high throughput screening. We developed and optimized several FP assays for binding to estrogen receptor alpha and two protein kinases with an assay volume of 100 microl. Without any re-optimization, a consistent signal window was maintained in 384- or 1536-well format when the assay volume varied from 2.5-100 microl at constant concentrations of all assay components. In contrast, the signal window decreased with decreasing assay volume at constant reagent concentration in the protein kinase C scintillation proximity assay (SPA) and prompt fluorescence assay. In addition, the effect of evaporation on the signal window was minimal for the FP assays. Our study suggests that FP is superior to SPA and prompt fluorescence in terms of reagent reduction in the miniaturized assay format.  相似文献   

14.
The low molecular weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitously expressed enzyme with several proposed roles in cell signaling. Previously, two tyrosine phosphorylation modifications of LMW-PTP at sites Tyr-131 and Tyr-132 in response to growth factor stimulation have been mapped and suggested to stimulate LMW-PTP phosphatase activity. Biochemical analysis of tyrosine phosphorylation of a tyrosine phosphatase is challenging because of the intrinsic instability of these modifications. Here we used expressed protein ligation to site-specifically incorporate a phosphotyrosine mimic (phosphonomethylenephenylalanine, Pmp) at the Tyr-131 and Tyr-132 positions and measured the catalytic activity of these semisynthetic LMW-PTPs. The phosphonate-modified LMW-PTPs were 10- to 23-fold less active in dephosphorylating phosphotyrosine peptides derived from the PDGF receptor and p190RhoGap, two putative cellular substrates. These findings suggest the first example of a tyrosine phosphatase that is inhibited by tyrosine phosphorylation and provide a new model for the regulation of LMW-PTP and its role in cell adhesion.  相似文献   

15.
Fluorescence for the determination of protein with functionalized nano-ZnS   总被引:4,自引:0,他引:4  
Wang LY  Kan XW  Zhang MC  Zhu CQ  Wang L 《The Analyst》2002,127(11):1531-1534
ZnS nanoparticles have been prepared and modified with sodium thioglycolate. The functionalized nanoparticles are water-soluble. They were used as fluorescence probes in the determination of proteins, which was proved to be a simple, rapid and specific method. In comparison with single organic fluorophores, these nanoparticle probes are brighter, more stable against photobleaching, and do not suffer from blinking. Under optimum conditions, linear relationships were found between the enhanced intensity of fluorescence at 441 nm and the concentration of protein in the range 0.1-4.0 microg mL(-1) for human serum albumin (HSA), 0.2-3.0 microg mL(-1) for bovine serum albumin (BSA) and 0.1-4.5 microg mL(-1) for gamma-globulin (gamma-G). The limits of detection were 0.015 microg mL(-1) for HSA, 0.024 microg mL(-1) and 0.017 microg mL(-1) for BSA and gamma-G, respectively. The method has been applied to the analysis of human serum samples collected from the hospital and the results were in good agreement with those reported by a hospital, indicating that the method presented here is not only sensitive and simple, but also reliable and suitable for practical application.  相似文献   

16.
A urinary protein assay has been investigated, employing a micro-flow injection analysis (μFIA) combined with an adsorptive separation of protein from analyte. The adsorptive separation part of protein in the artificial urine with ceramic hydroxyapatite is integrated on the μFIA chip, since the interference of other components coexisting in urine occurs in the conventional FIA system. The typical FI peak can be obtained following the adsorption–elution process of the protein prior to the detection, and the protein concentration in artificial urine can be quantitatively determined.  相似文献   

17.
Functionalized nanoparticles hold great promise in realizing highly sensitive and selective biodetection. We report a single disposable chip which is capable of carrying out a multi-step process that employs nanoparticles--a bio-barcode assay (BCA) for single protein marker detection. To illustrate the capability of the system, we tested for the presence of prostate specific antigen (PSA) in buffer solution and goat serum. Detection was accomplished at PSA concentrations as low as 500 aM. This corresponds to only 300 copies of protein analytes using 1 microL total sample volume. We established that the on-chip BCA for PSA detection offers four orders of magnitude higher sensitivity compared to commercially available ELISA-based PSA tests.  相似文献   

18.
Sensitive and reliable monitoring of kinase activity was reported by using highly efficient fluorescence resonance energy transfer of conjugated polymer nanoparticles (CPNs) to a rhodamine labelled peptide substrate.  相似文献   

19.
Protein tyrosine phosphatases (PTPs) are critical cell-signaling molecules. Inhibitors that are selective for individual PTPs would be valuable tools for dissecting complicated phosphorylation networks. However, the common architecture of PTP active sites impedes the discovery of such compounds. To achieve target selectivity, we have redesigned a PTP/inhibitor interface. Site-directed mutagenesis of a prototypical phosphatase, PTP1B, was used to generate "inhibitor-sensitized" PTPs. The PTP1B mutants were targeted by modifying a broad specificity PTP inhibitor with chemical groups that are sterically incompatible with wild-type PTP active sites. From a small panel of putative inhibitors, compounds that selectively inhibit Ile219Ala PTP1B over the wild-type enzyme were identified. Importantly, the corresponding mutation also conferred novel inhibitor sensitivity to T-cell PTP, suggesting that a readily identifiable point mutation can be used to generate a variety of inhibitor-sensitive PTPs.  相似文献   

20.
Mann TL  Krull UJ 《The Analyst》2003,128(4):313-317
Information about concentration, molecular structure, binding events, and motion can be obtained using fluorescence spectroscopy methods. Fluorescence polarization spectroscopy is one such method, which studies the relationship between the polarization of light that is used for excitation and light that is subsequently detected from fluorescence. The extent of change of polarization between excitation and emission can be used to study physical processes such as rotational diffusion, extent of denaturation, and orientation at surfaces. In this article Mann and Krull describe the underlying principles to the technique and show how fluorescence polarization spectroscopy has contributed to protein analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号