首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability and passivity of poly(ethylene glycol)-polyethylenimine (PEG-PEI) graft films are important for their use as antifouling coatings in a variety of biotechnology applications. We have used AFM colloidal-probe force measurements combined with optical reflectometry to characterize the surface properties and stability of PEI and dense PEG-PEI graft films on silica. Initial contact between bare silica probes and PEI-modified surfaces yields force curves that exhibit a long-range electrostatic repulsion and short-range attraction between the surfaces, indicating spontaneous desorption of PEI in the aqueous medium. Further transfer of PEI molecules to the probe occurs with subsequent application of forces between FR = 300 and 500 microN/m. The presence of PEG reduces the adhesive properties of the PEI surface and prevents transfer of PEI molecules to the probe with continuous contact, though an initial desorption of PEI still occurs. Glutaraldehyde crosslinking of the graft films prevents both the initial desorption and subsequent transfer of the PEI, resulting in sustained attractive interaction forces of electrostatic origin between the negatively charged probe and the positively charged copolymer graft films.  相似文献   

2.
Choose sides: differential polymer adhesion   总被引:1,自引:0,他引:1  
AFM-based single molecule desorption measurements were performed on surface end-grafted poly(acrylic acid) monolayers as a function of the pH of the aqueous buffer to study the adhesion properties of polymers that bridge two surfaces. These properties were found to depend on the adhesion forces of both surfaces in a differential manner, which is explained with a simple model in analogy to the Bell-Evans formalism used in dynamic force spectroscopy. The measured interaction forces between the poly(acrylic acid) chains and silicon nitride AFM tips depend on the grafting density of the polymer monolayers as well as on the contour length of the polymer chains. This study demonstrates that the stability of polymer bridges is determined by the adhesion strengths on both surfaces, which can be tuned by using pH-dependent polyelectrolyte monolayers.  相似文献   

3.
Spherical calcium dioleate particles ( approximately 10 mum in diameter) were used as AFM (atomic force microscope) probes to measure interaction forces of the collector colloid with calcite and fluorite surfaces. The attractive AFM force between the calcium dioleate sphere and the fluorite surface is strong and has a longer range than the DLVO (Derjaguin-Landau-Verwey-Overbeek) prediction. The AFM force between the calcium dioleate sphere and the mineral surfaces does not agree with the DLVO prediction. Consideration of non-DLVO forces, including the attractive hydrophobic force and the repulsive hydration force, was necessary to explain the experimental results. The non-DLVO interactions considered were justified by the different interfacial water structures at calcite- and fluorite-water interfaces as revealed by the numerical computation experiments with molecular dynamics simulation.  相似文献   

4.
Pyrene derivatives can absorb onto the surface of carbon nanotubes and graphite particles through pi-pi interactions to functionalize these inorganic building blocks with organic surface moieties. Using single molecule force spectroscopy, we have demonstrated the first direct measurement of the interaction between pyrene and a graphite surface. In particular, we have connected a pyrene molecule onto an AFM tip via a flexible poly(ethylene glycol) (PEG) chain to ensure the formation of a molecular bridge. The pi-pi interaction between pyrene and graphite is thus indicated to be approximately 55 pN with no hysteresis between the desorption and adhesion forces.  相似文献   

5.
Abstract

In this study, the atomic force microscopy colloidal probe technique was employed to investigate the interaction between apolar, basic and acidic model oil probes and a calcite surface in solutions containing different concentrations of NaCl, CaCl2 and Na2SO4. In the presence of SO42?, hydration and structural forces were observed between apolar model oil probes and a calcite surface on approach. Relatively low adhesion forces were observed between the basic model oil probes and the calcite surface, while higher adhesion forces were observed between the acidic model oil probes and the calcite surface. Furthermore, the adhesion forces between the basic model oil probes and the calcite surface significantly increased in the presence of SO42?, while the adhesion force between the acidic model oil probes and the calcite surface decreased in the presence of Ca2+ or SO42?. The differences in the adhesion forces are related to electrostatic attraction and ion bridging forces between the model oil probes and the calcite surface.  相似文献   

6.
The interaction forces between poly(N-isopropylacrylamide) (PNIPAAm)-grafted surfaces and colloidal particles in an aqueous solution were investigated using an atomic force microscope. Measurements were conducted between smooth silicon wafers on which PNIPAAm was terminally grafted and silica particles hydrophobized with a silanating reagent in an aqueous electrolyte solution under controlled temperature. Below the lower critical solution temperature (LCST) of PNIPAAm, there were large repulsive forces between the surfaces, both on approach and separation of the surfaces. On the other hand, above LCST, attractive forces were observed both in approaching and in separating force curves. When surface hydrophobicity of the particles increased, the maximum attractive force tended to increase. The changes of hydration state of the grafted PNIPAAm chains depending on temperature are considered to greatly alter the interaction force properties. The role of the intermolecular interaction between the PNIPAAm chains and the hydrophobic particles in the interaction forces is discussed.  相似文献   

7.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

8.
The forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations. At smaller separations, attractive forces, or regions of separation with (close to) constant force, were observed. This was interpreted as being due to desorption and rearrangement in the adsorbed layer induced by the proximity of a second surface. Analysis of the decay length of the repulsive double-layer force showed that the majority of the gemini surfactants were fully dissociated. However, the degree of ion pair formation, between a gemini surfactant and a bromide counterion, increased with increasing surfactant concentration and was larger for the gemini surfactant with a shorter spacer length.  相似文献   

9.
We have investigated the structural and depletion forces between silica glass surfaces in aqueous, salt-free solutions of sodium poly(styrene sulfonate). The interaction forces were investigated by two techniques: total internal reflectance microscopy (TIRM) and colloid probe atomic force microscopy (AFM). The TIRM technique measures the potential energy of interaction directly, while the AFM is a force balance. Comparison between the data sets was used to independently calibrate the AFM data since the separation distances cannot be unequivocally determined by this technique. Oscillatory structural forces are excellent for this work since they give multiple reference points against which to analyze. Comparison of the data from the two techniques highlighted significant uncertainties in the AFM data. At low polymer concentrations, a significant uncertainty in the apparent zero separation distance was seen as a result of the AFM cantilever reaching an apparent constant compliance region prior to any real contact between the surfaces. Further complications arising from the number and position of the measured minima were also seen in the dilute polymer concentration regime as a result of hydrodynamic drainage between the approaching surfaces in the AFM perturbing the delicate structural components in the fluid.  相似文献   

10.
An anionic surfactant interacts strongly with a polymer molecule to form a self-assembled structure, due to the attractive force of the hydrophobic association and electrostatic repulsion. In this crystallization medium, the surfactant-stabilized inorganic particles adsorbed on the polymer chains, as well as the bridging effect of polymer molecules, controlled the aggregation behavior of colloidal particles. In this presentation, the spontaneous precipitation of calcium carbonate (CaCO3) was conducted from the aqueous systems containing a water-soluble polymer (poly(vinylpyrrolidone), PVP) and an anionic surfactant (sodium dodecyl sulfate, SDS). When the SDS concentrations were lower than the onset of interaction between PVP and SDS, the precipitated CaCO3 crystals were typically hexahedron-shaped calcite; the increasing SDS concentration caused the morphologies of CaCO3 aggregates to change from the flower-shaped calcite to hollow spherical calcite, then to solid spherical vaterite. These results indicate that the self-organized configurations of the polymer/surfactant supramolecules dominate the morphologies of CaCO3 aggregates, implying that this simple and versatile method expands the morphological investigation of the mineralization process.  相似文献   

11.
Surfaces coated with poly(ethylene oxide) containing nonionic polymers are of interest in medical applications due to, among other things, the low adsorption of proteins on such surfaces. In this paper we have studied the interfacial properties of surfaces coated with PEO by measuring the forces acting between two such surfaces in water and across a protein solution as well as between one such surface and a surface carrying adsorbed proteins. One type of surface coating was a graft copolymer of poly(ethylene imine) and poly(ethylene oxide) where the cationic poly(ethylene imine) group anchored the polymer to negatively charged mica surfaces. Three different ways to prepare this coating was used and compared. It was found that this coating was not stable in the presence of lysozyme, a small positively charged protein, when the PEO graft density was low. The other type of coating was obtained by adsorbing ethyl(hydroxyethyl)-cellulose onto hydrophobised mica surfaces. The driving force for adsorption is in this case the hydrophobic interaction between nonpolar segments of the polymer and the surface. The EHEC coating was stable in the presence of lysozyme and the interactions between adsorbed layers of lysozyme and EHEC coated surfaces are purely repulsive due to long-range steric forces.  相似文献   

12.
In this study, the supramolecular interactions occurring between beta-cyclodextrin-based surfaces and macromolecular chains modified at one end with naphthyl, adamantyl, or phenyladamantyl hydrophobic groups were investigated by means of a quartz crystal microbalance. beta-Cyclodextrin-functionalized gold electrodes were obtained through the amide-coupling reaction between mono-6-deoxy-6-amino-beta-cyclodextrin and 11-mercaptoundecanoic acid self-assembled monolayer allowing the reproducible preparation of densely grafted surfaces with host properties. The interaction data obtained for the three different modified poly(ethylene glycol)s are in good agreement with our previous studies performed by high performance liquid chromatography and surface plasmon resonance. This evidences that the driving force for the supramolecular interaction is based on the inclusion of the hydrophobic terminal group of the chains within the cyclodextrin cavities. The reversibility of the inclusion process was proven through the regeneration of the original host properties of the sensing surfaces using sodium dodecylsulfate as a competitor for the desorption of the poly(ethylene glycol) chains.  相似文献   

13.
A novel approach to analyze the force response of multiple polymer strands, which are bridged between two surfaces, is proposed. The response of single polymer strands is experimentally accessible by measuring the force upon separation of two polymer-coated surfaces with the atomic force microscope. Our approach is based on the decomposition of the stretching and desorption sequence into contributions of independently bridged chains and of the elimination of loops formed on the opposite surface during contact. This approach was applied to investigate the bridging adhesion of surfaces coated with poly(vinylamine) (PVA). The force response of single PVA molecules was described on the basis of a recently proposed model, which accounts for the discrete chain character of the polymer at higher extension forces. As exemplary results, we determined the length distributions of the individual chains and the loop number distribution of these bridging chains on the polyelectrolyte-coated surfaces. The former were compared with scaling theories of polymer adsorption.  相似文献   

14.
The interaction forces between adsorbed polymer layers were investigated. Two types of graft copolymers that were adsorbed on hydrophobic surfaces have been investigated: (i) a graft copolymer consisting of polymethylmethacrylate/polymethacrylic acid back bone (the B chain) on which several poly(ethylene oxide) chains are grafted (to be referred to as PMMA/PEOn); and (ii) a graft copolymer consisting of inulin (linear polyfructose with degree of polymerization > 23) (the A chain) on which several C12 chains are grafted (INUTEC SP1). In the first case adsorbed layers of the graft copolymer were obtained on mica sheets and the interaction forces were measured using the surface force apparatus. In the second case the interaction forces were measured using Atomic Force Microscopy (AFM). For this purpose a hydrophobically modified glass sphere was attached to the tip of the cantilever of the AFM and the glass plate was also made hydrophobic. Both the sphere and the glass plate contained an adsorbed layer of INUTEC SP1.In the surface forces apparatus one essentially measures the energy E(D)–distance D curves for the graft copolymer of PMMA/PEOn between mica surfaces bearing the graft copolymer and this could be converted to interaction energy between flat surfaces. Using the de Gennes scaling theory, it is possible to calculate the interaction energy between the polymer layers. The same graft copolymer was used in latex dispersions and the high frequency modulus G′ was measured as a function of the volume fraction ? of the dispersion. This high frequency modulus could be related to the potential of mean force. In this way one could compare the results obtained from rheology and those obtained from direct measurement of interaction forces.In the AFM method, the interaction forces are measured in the contact area between two surfaces, i.e. a spherical glass particle and a glass plate. Both glass spheres and plates were hydrophobized using dichlorodimethylsilane. Results were obtained for adsorbed layers of INUTEC SP1 in water and in the presence of various concentrations of Na2SO4 (0.3, 0.8, 1.0 and 1.5 mol dm− 3). All results showed a rapid increase of force with a decrease of separation distance and the forces were still repulsive up to the highest Na2SO4 concentration. This explains the high stability of dispersions when using INUTEC SP1 as stabilizer.  相似文献   

15.
A novel thermo- and pH-sensitive nanogel particle, which is a core-shell structured particle with a poly(N-isopropylacrylamide) (p(NIPAAm)) hydrogel core and a poly(ethylene glycol) monomethacrylate grafted poly(methacrylic acid) (p(MMA-g-EG)) shell, is of interest as a vehicle for the controlled release of peptide drugs. The interactions between such nanogel particles and artificial mucin layers during both approach and separation were successfully measured by using colloid probe atomic force microscopy (AFM) under various compression forces, scan velocities, and pH values. While the magnitudes of the compression forces and scan velocities did not affect the interactions during the approach process, the adhesive force during the separation process increased with these parameters. The pH values significantly influenced the interactions between the nanogel particles and a mucin layer. A large steric repulsive force and a long-range adhesive force were measured at neutral pH due to the swollen p(MMA-g-EG) shell. On the other hand, at low pH values, the steric repulsive force disappeared and a short-range adhesive force was detected, which resulted from the collapse of the shell layer. The nanogel particles possessed a pH response that was sufficient to protect the incorporated peptide drug under the harsh acidic conditions in the stomach and to effectively adhere to the mucin layer of the small intestine, where the pH is neutral. The relationships among the nanogel particle-mucin layer interactions, pH conditions, scan velocities, and compression forces were systemically investigated and discussed.  相似文献   

16.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

17.
The adsorption of polyelectrolyte complexes, PEC, made from the cationic poly (diallyldimethylammonium) chloride (PDADMAC) and the anionic maleic acid-co-propene copolymer (MA-P) on a Si-wafer surface has been studied. The application of highly diluted colloidally dispersed PEC solutions led to the deposition of single PEC particles onto the surface of the Si-wafer. The interaction forces of the heterogeneously covered surface were monitored by direct force measurements with an atomic force microscope (AFM) in the force volume mode. On the surface of a single PEC particle drastic changes in the interaction forces were found in comparison with the unmodified Si-wafer: in all force vs. distance curves a strong increase of the adhesion was measured that can be attributed to the formation of electrostatic bonds between the negatively charged Si3N4-tip and the cationic excess charge of the PEC. Additionally, the behavior during approach of both surfaces has been distinct: at pH 6.1 we see a long range electrostatic attraction between the tip and the PEC particle. The attraction becomes even stronger at pH 4.1, because of an increased positive net charge. Generally, a heterogeneous surface with a wide variety of interaction features can be created by the adsorption of PEC particles.  相似文献   

18.
Interaction forces between surfaces designed to be protein resistant and fibrinogen (Fg) were investigated in phosphate-buffered saline with colloid probe atomic force microscopy. The surfaces of the silica probes were coated with a layer of fibrinogen molecules by adsorption from the buffer. The technique of low-power, pulsed AC plasma polymerization was used to make poly(ethylene glycol) (PEG)-like coatings on poly(ethylene teraphthalate) by using diethylene glycol vinyl ether as the monomer gas. The degree of PEG-like nature of the films was controlled by use of a different effective plasma power in the chamber for each coating, ranging from 0.6 to 3.6 W. This produced a series of thin films with a different number of ether carbons, as assessed by X-ray photoelectron spectroscopy. The interaction force measurements are discussed in relation to trends observed in the reduction of fibrinogen adsorption, as determined quantitatively by (125)I radio-labeling. The plasma polymer coatings with the greatest protein-repelling properties were the most PEG-like in nature and showed the strongest repulsion in interaction force measurements with the fibrinogen-coated probe. Once forced into contact, all the surfaces showed increased adhesion with the protein layer on the probe, and the strength and extension length of adhesion was dependent on both the applied load and the plasma polymer surface chemistry. When the medium was changed from buffer to water, the adhesion after contact was eliminated and only appeared at much higher loads. This indicates that the structure of the fibrinogen molecules on the probe is changed from an extended conformation in buffer to a flat conformation in water, with the former state allowing for stronger interaction with the polymer chains on the surface. These experiments underline the utility of aqueous surface force measurements toward understanding protein-surface interactions, and developing nonfouling surfaces that confer a steric barrier against protein adsorption.  相似文献   

19.
Atomic force spectroscopy (AFS) was used to measure interaction forces between the tip and nanostructured layers of poly(o-ethoxyaniline) (POEA) in pure water and CuSO4 solutions. When the tip approach and retraction were carried out at low speeds, POEA chains could be physisorbed onto the Si3N4 tip via nonspecific interactions. We conjecture that while detaching, POEA chains were stretched and the estimated chain lengths were consistent with the expected values from the measured POEA molecular weight. The effects from POEA doping could be investigated directly by performing AFS measurements in a liquid cell, with the POEA film exposed to liquids of distinct pH values. For pH > or = 6.0, the force curves normally displayed an attractive region for POEA, but at lower pH values-where POEA is protonated-the repulsive double-layer forces dominated. Measurements in the liquid cell could be further exploited to investigate how the film morphology and the force curve are affected when impurities are deliberately introduced in the liquid. The shape of the force curves and the film morphology depended on the concentration of heavy metal in the liquid cell. AFS may therefore be used to study the interaction between film and analyte, with important implications for the understanding of mechanisms governing the sensing ability of taste sensors.  相似文献   

20.
A new method for determining Hamaker constants was examined for materials of interest in integrated circuit manufacture. An ultra-high vacuum atomic force microscope and an atomic force microscope operated in a nitrogen environment were used to measure the interaction forces between metals, dielectrics, and barriers used during the metalization portion of integrated circuit manufacturing. The materials studied included copper, silver, titanium nitride, silicon dioxide, poly(tetrafluoroethylene), and parylene-N. Spheres coated with a material of interest were mounted on AFM cantilevers and brought into contact with substrates of interest. The interaction force was measured as the cantilever approached the substrate but before the two surfaces came into contact, and also when the particle was pulled out of contact with the substrate. The Hamaker constant calculation from the contact measurement is based on an adhesion model that quantifies the contribution of geometrical, morphological and mechanical properties of materials to the measured adhesion force. Hamaker constants determined with this new approach were compared with values found by using the Derjaguin approximation for a sphere to describe the interaction force as the cantilever approaches the surface. Both approaches produced similar values for most of the systems studied, with variations of less than 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号