首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate rapid cell signaling, analytical methods are required that can generate repeatable chemical signals for stimulating live cells with high temporal resolution. Here, we present a chemical signal generator based on hydrodynamic gating, permitting flexible stimulation of single adherent cells with a temporal resolution of 20 ms. Studies of adenosine triphosphate (ATP)-induced calcium signaling in HeLa cells were demonstrated using this developed method. Consecutive treatment of the cells with ATP pulses of 20 or 1 s led to an increase of latency, which might be another indicator of receptor desensitization in addition to the decrease in the amplitude of calcium spikes. With increasing duration of ATP pulses from milliseconds to a few seconds, the cellular responses transitioned from single calcium spikes to calcium oscillation gradually. We expected this method to open up a new avenue for potential investigation of rapid cell signaling.  相似文献   

2.
Nanosecond electric pulse-induced calcium entry into chromaffin cells   总被引:1,自引:0,他引:1  
Electrically excitable bovine adrenal chromaffin cells were exposed to nanosecond duration electric pulses at field intensities ranging from 2 MV/m to 8 MV/m and intracellular calcium levels ([Ca(2+)](i)) monitored in real time by fluorescence imaging of cells loaded with Calcium Green. A single 4 ns, 8 MV/m pulse produced a rapid, short-lived increase in [Ca(2+)](i), with the magnitude of the calcium response depending on the intensity of the electric field. Multiple pulses failed to produce a greater calcium response than a single pulse, and a short refractory period was required between pulses before another maximal increase in [Ca(2+)](i) could be triggered. The pulse-induced rise in [Ca(2+)](i) was not affected by depleting intracellular calcium stores with caffeine or thapsigargin but was completely prevented by the presence of EGTA, Co(2+), or the L-type calcium channel blocker nitrendipine in the extracellular medium. Thus, a single nanosecond pulse is sufficient to elicit a rise in [Ca(2+)](i) that involves entry of calcium via L-type calcium channels.  相似文献   

3.
Abstract— The effect of external calcium level, calcium ionophore A23187 and red light on the circadian rhythm of Robinia pseudoacacia leaflet movements has been studied. Fifteen minute red light pulses shifted the phase of leaflet rhythmic movement with a phase-response curve type 0. Maximum advances and delays (about 10 h and 8 h, respectively) were obtained between circadian time (CT) 10 and CT 12 at the end of a subjective day. An almost null effect was obtained at the end of a subjective night. Phytochrome is the photoreceptor involved in phase shifting since this effect of red light is reversed by 5 min of far red light. Two hour pulses of external calcium, applied as CaCl2 (10 m M ), and 2 h pulses of calcium ionophore A23187 (10–50 μM) also shifted the phase of leaflet circadian movement and caused the same type of phase-response curve, with maximum advances and delays at the same time as those produced by red light. Two hour pulses of an external calcium chelator, EGTA (5 m M ), and a calcium channel blocker, LaCl3 (10–50 m M ), damped the circadian rhythm or did not change the phase when they were applied at lower concentration. These results indicate that phytochrome could control the circadian oscillator, which drives Robinia leaflet movements by increasing the intracellular calcium concentration.  相似文献   

4.
Abstract— The effect of several calmodulin (CAM) antagonists, blue light and an intracellular calcium inhibitor, on the circadian rhythm of Robinia pseudoacacia leaflet movement has been studied. The CAM antagonists, chlorpromazine (CPZ), trifluoperazine (TFP), calmidazolium and N -(6-aminohexyI)-5-chloro-1-naphthalenesulfonamide (W7) shifted the phase of the circadian rhythmic movement while W5, an inactive analogue of W7, had no effect. Two hour pulses of calmidazolium (10–50 μ M ) gave rise to a phase-response curve with maximum advances (up to 9 h) at circadian time (CT) 6 and maximum delays (up to 7 h) at CT 22. No effect was found on transition from subjective day to subjective night and vice versa. The TFP (10–50 μ M ), applied as 2 h pulses during the circadian cycle, shifted the phase of the circadian leaflet movement and also produced maximum advances in the middle of subjective day. Two hour blue light pulses shifted the phase of leaflet rhythmic movement. The phase-response curve obtained showed maximum advances (up to 5 h) in the middle of subjective day and maximum delays on transition from subjective day to subjective night. Two hour pulses of 50 μ M 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate hypochloride (TMB-8), an intracellular calcium inhibitor, caused the same type of phase-response curve, with maximum advances and delays occurring at the same time as those produced by blue light. These results indicate that CAM might be involved in controlling the circadian oscillator that drives Robinia leaflet movement. The relationship between CAM and calcium with red and blue light is discussed.  相似文献   

5.
The potential generated by a plastic-membrane calcium ion-selective electrode (i.s.e.) is shown to be indirectly measurable by a non-zero current method based on bipolar pulse conductance. Linear current—voltage curves are obtained using 0–5-V pulses; the current axis intercept is related to the i.s.e. potential. A simple electrical contact (e.g., platinum or stainless steel) can be used instead of a poised reference electrode as the counter electrode in this two-electrode system. Long-term exposure of the i.s.e. to calcium solutions causes an upward drift in the measured current. This drift is minimized by avoiding long exposure times to solution, rinsing the electrode between measurements, and constructing current—voltage curves for determination of the current axis intercepts. Voltage pulses lasting 100 μs are optimum for this method. Shorter pulses are subject to error from capacitive charging currents, and longer pulses yield poorer precision, and degrade the electrode through faradaic reactions. The measured signal is dependent upon Ca2+ concentration (rather than activity), making ionic strength adjustment unnecessary. The concentration dependence is induced by application of voltage pulses greater than ~ 15 mV in amplitude. Selectivities of the potentiometric and conductometric methods are shown to be comparable for a variety of interfering monovalent and divalent cations. The conductometric method yields a fast i.s.e. response because of induced migration of Ca2+ into the membrane. Response time decreases as the pulse height increases. Pulses greater than 2 V in magnitude yield response times limited by the solution mixing time rather than by the electrode.  相似文献   

6.
The propagation of intercellular calcium signals provides a mechanism to coordinate cell population activity, which is essential for regulating cell behavior and organ development. However, existing analytical methods are difficult to realize localized chemical stimulation of a single cell among a population of cells that are in close contact with one another for studying the propagation of calcium wave. In this work, a microfluidic method is presented for the analysis of contact-dependent propagation of intercellular calcium wave induced by extracellular ATP using multiple laminar flows. Adjacent cells were seeded ∼300 μm downstream the intersection of a Y-shaped microchannel with negative pressure pulses. Consequently, the lateral diffusion distance of the chemical at cell locations was limited to ∼26 μm with a total flow rate of 20 μL min−1, which prevented the interference of diffusion-induced cellular responses. Localized stimulation of the target cell with ATP induced the propagation of intercellular calcium wave among the cell population. In addition, studies on the spread of intercellular calcium wave under octanol inhibition allowed us to characterize the gap junction mediated cell–cell communication. Thus, this novel device will provide a versatile platform for intercellular signal transduction studies and high throughput drug screening.  相似文献   

7.
Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive—in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.  相似文献   

8.
We have studied the phenomenon of calcium complexation by lab synthesized amphiphilic (alpha-aminoalkyl)-phosphonocarboxylic or -phosphonic acids. The electrical conductivity of aqueous solutions of sodium salts of all these acids was measured versus the volume of a calcium salt solution added. It appeared that calcium complexes are formed in a Ca/P atomic ratio close to 1. Calcium phosphonocarboxylates and calcium phosphonates were also precipitated by mixing aqueous solutions of disodium salts of phosphorus amphiphiles and calcium nitrate solutions. Before chemical analysis, these complexes were calcined to remove the organic part. In the mineralized products, calcium and phosphate were assayed: the Ca/P atomic ratio was equal to 1. X-ray diffraction and IR spectroscopy showed that they are made entirely of beta pyrophosphate (Ca2P2O7), a result in agreement with previous chemical analysis. The chemical formula of the starting calcium complexes could be written as CaL2H2O (L=ligand). The SEM micrographs of these complexes show plate-like structures. XRD patterns are characteristic of layered structures. These facts suggest that calcium complexes are composed of alternating bimolecular layers of calcium alkylphosphonocarboxylates or calcium alkylphosphonates, the chains being tilted and partially interdigitated.  相似文献   

9.
Ethanol molecules were irradiated with a pair of temporally overlapping ultrashort intense laser pulses (10(13)-10(14) Wcm(2)) with different colors of 400 and 800 nm, and the dissociative ionization processes have been investigated. The yield ratio of the C-O bond breaking with respect to the C-C bond breaking was varied in the range of 0.17-0.53 sensitively depending on the delay time between the two laser pulses, and the absolute value of the yield of the C-O bond breaking was found to be increased largely when the Fourier-transform limited 800 nm laser pulse overlaps the stretched 400 nm laser pulse, demonstrating an advantage of the two-color intense laser fields in controlling chemical bond breaking processes.  相似文献   

10.
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells’ viability with and without calcium administration. For high-voltage pulses, the cell death’s mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells’ mobility.  相似文献   

11.
The production of lignin peroxidase fromPhanerochaete chrysosporium was studied using immobilized mycelia in nylon-web cubes in semicontinuous fermentation using glucose pulses or ammonium tartrate pulses. Consistent enzyme production was achieved when glucose pulses were used, leading to an average activity of 253 U/L. The crude enzyme was added to eucalyptus kraft pulp before conventional and ECF bleaching sequences. Optimization of the enzymatic pretreatment led to the following operational conditions: enzyme load of 2 U/g of pulp, hydrogen peroxide addition rate of 10 ppm/h, and reaction time of 60 min. Pulp final characteristics were dependent on the chemical treatment sequence that followed enzymatic pretreatment. The chief advantage of enzymatic pretreatment was pulp viscosity preservation, which was observed in most of the experiments carried out with seven different chemical treatment sequences  相似文献   

12.
The in vivo formation of calcium oxalate concretions having calcium phosphate nidi is simulated in an in vitro (37 degrees C, pH 6.0) dual constant composition (DCC) system undersaturated (sigma DCPD = -0.330) with respect to brushite (DCPD, CaHPO 4 . 2H 2O) and slightly supersaturated (sigma COM = 0.328) with respect to calcium oxalate monohydrate (COM, CaC2O4 . H2O). The brushite dissolution provides calcium ions that raise the COM supersaturation, which is heterogeneously nucleated either on or near the surface of the dissolving calcium phosphate crystals. The COM crystallites may then aggregate, simulating kidney stone formation. Interestingly, two intermediate phases, anhydrous dicalcium phosphate (monetite, CaHPO4) and calcium oxalate trihydrate (COT), are also detected by X-ray diffraction during this brushite-COM transformation. In support of clinical observations, the results of these studies demonstrate the participation of calcium phosphate phases in COM crystallization providing a possible physical chemical mechanism for kidney stone formation.  相似文献   

13.
Multidimensional chemical detection and identification based on phase shaped femtosecond laser pulses coupled to mass spectrometry is demonstrated. The method based on binary phase shaping (BPS) takes into account the accuracy and precision standards required by analytical chemistry. It couples multiphoton intrapulse interference of ultrashort laser pulses with time-of-flight mass spectrometry (TOF-MS). We demonstrate that BPS-MS provides a rigorous multidimensional technique for the detection and identification of analogues to chemical agents and mixtures in real time. Experimental results on dimethyl phosphite and pyridine illustrate the new approach toward the real-time accurate detection and identification of chemical compounds including isomers.  相似文献   

14.
IBRS2 epithelial cells in monolayer culture fused at a very high frequency when exposed to high-voltage electric pulsing fields. Exposure to four repetitive electric pulses of about 1.7 kilovolts per centimeter with a duration of 100 microseconds caused more than 90 percent of the cells to become fused (multinucleate) when 1 millimolar magnesium was present in the pulsing medium. Magnesium and calcium ions in the pulsing medium had a very strong effect on the electrofusion of IBRS2 cells. Magnesium could increase not only the electrofusion yield but also the stability of the cells under the conditions of electrofusion. In contrast, calcium inhibited electrofusion and decreased the stability of the cells. Careful microscopic observation revealed the electrofusion of IBRS2 cells to be very complex, dynamic process undergoing many interesting changes. A possible explanation for the process and mechanism of electrofusion of IBRS2 cells was proposed in agreement with the experimental observation.  相似文献   

15.
IBRS2 epithelial cells in monolayer culture fused at a very high frequency when exposed to high-voltage electric pulsing fields. Exposure to four repetitive electric pulses of about 1.7 kilovolts per centimeter with a duration of 100 microseconds caused more than 90 percent of the cells to become fused (multinucleate) when 1 millimolar magnesium was present in the pulsing medium. Magnesium and calcium ions in the pulsing medium had a very strong effect on the electrofusion of IBRS2 cells. Magnesium could increase not only the electrofusion yield but also the stability of the cells under the conditions of electrofusion. In contrast, calcium inhibited electrofusion and decreased the stability of the cells. Careful microscopic observation revealed the electrofusion of IBRS2 cells to be very complex, dynamic process undergoing many interesting changes. A possible explanation for the process and mechanism of electrofusion of IBRS2 cells was proposed in agreement with the experimental observation.  相似文献   

16.
Excitable chemical systems can process information coded in excitation pulses. Here we demonstrate the simplest realization of a chemical signal diode that transmits pulses in one direction only. It is constructed with only two different nonexcitable barriers. The proposed diode has been tested in numerical simulations and in experiments with Ru-catalyzed Belousov-Zhabotinsky reaction.  相似文献   

17.
This paper presents polychromatic selective polarization inversion (PC-SPI) as an alternative to the polarization transfer methods recently developed for the application of NMR to large biological molecules. Theoretical and numerical considerations indicate that PC-SPI has the potential for more efficient polarization transfer under conditions of rapid transverse relaxation compared to J coupling- and cross-correlated relaxation-based transfers. The main advantage offered by the method presented here is the maintenance of near-optimal trajectories of inversion of the individual components of the spin magnetization while using broadband optimized pulses. A 2D experiment was implemented combining PC-SPI with TROSY-based chemical shift correlation. The experiment was applied to detect (15)N-(1)H chemical shift correlation spectra of a 200 kDa complex consisting of an 80% (2)H- and uniformly (15)N,(13)C-labeled 22 kDa portion of complement receptor type 1 and unlabeled C3b of complement (180 kDa).  相似文献   

18.
19.
Bimolecular chemical reaction control of gaseous CO and H(2) at room temperature and atmospheric pressure, without any catalyst, using shaped femtosecond laser pulses is presented. High intensity laser radiation applied to a reaction cell facilitates non-resonant bond breakage and the formation of a range of ions, which can then react to form new products. Stable reaction products are measured after irradiation of a reaction cell, using time of flight mass spectroscopy. Bond formation of C-O, C-C, and C-H bonds is demonstrated as CO(2)(+), C(2)H(2)(+), CH(+), and CH(3)(+) were observed in the time of flight mass spectrum of the product gas, analyzed after irradiation. The formation of CO(2) is shown to be dependent on laser intensity, irradiation time, and on the presence of H(2) in the reaction cell. Using negatively chirped laser pulses more C-O bond formation takes place as compared to more C-C bond formation for unchirped pulses.  相似文献   

20.
To gain a complete understanding of a chemical reaction, it is necessary to determine the structural changes that occur to the reacting molecules during the reaction. Chemists have long dreamed of being able to determine the molecular structure changes that occur during a chemical reaction, including the structures of transition states (TSs). The use of ultrafast spectroscopy to gain a detailed knowledge of chemical reactions (including their TSs) promises to be a revolutionary way to increase reaction efficiencies and enhance the reaction products, which is difficult to do using conventional methods that are based on trial and error. To confirm the molecular structures of TSs predicted by theoretical analysis, chemists have long desired to directly observe the TSs of chemical reactions. Direct observations have been realized by ultrafast spectroscopy using ultrashort laser pulses. Our group has been able to stably generate visible to near‐infrared sub‐5‐fs laser pulses using a noncollinear optical parametric amplifier (NOPA). We used these sub‐5‐fs pulses to study reaction processes (including their TSs) by detecting structural changes. We determine reaction mechanisms by observing the TSs in a chemical reaction and by performing density‐functional theory calculations. DOI 10.1002/tcr.201000018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号