首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work shows the synthesis and characterization of new carbonyl complexes derived of 1,8‐naphthyridine. Covalently bonded complex can be successfully employed in building of supramolecular structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

4.
Treatment of the chiral tripod ligand (LMent,SC)-CpH(PNMent) with (Ph3P)3RuCl2 in ethanol afforded the two chiral-at-metal diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] (70% de) in which the cyclopentadienyl group and the P atom of the ligand coordinated at the metal center. The (LMent,SC,RRu)-diastereomer was isolated by crystallization from ethanol-pentane and its structure was established by X-ray crystallography. The (LMent,SC,RRu)-diastereomer epimerized in CDCl3 solution at 60 °C in a first-order reaction with a half-life of 5.66 h. In alcoholic solution epimerization occurred at room temperature. Substitution of the chloride ligand in (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] by nitriles NCR (R = Me, Ph, CH2Ph) in the presence of NH4PF6 gave mixtures of the diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)NCR]PF6. Treatment of (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)Cl] with piperidine or morpholine in the presence of NH4PF6 led to the chiral-at-metal diastereomers (LMent,SC,RRu)- and (LMent,SC,SRu)-[Cp(PNMent)Ru(PPh3)NH3]PF6 (6% de).  相似文献   

5.
The common use of NHC complexes in transition‐metal mediated C–C coupling and metathesis reactions in recent decades has established N‐heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC‐containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of complexes with chiral, chelating bis(NHC) ligands are rare. In the present work new chiral iridium(I) bis(NHC) complexes and their application in the asymmetric transfer hydrogenation of ketones are described. A series of chiral bis(azolium) salts have been prepared following a synthetic pathway, starting from L ‐valinol and the modular buildup allows the structural variation of the ligand precursors. The iridium complexes were formed via a one‐pot transmetallation procedure. The prepared complexes were applied as catalysts in the asymmetric transfer hydrogenation of various prochiral ketones, affording the corresponding chiral alcohols in high yields and moderate to good enantioselectivities of up to 68%. The enantioselectivities of the catalysts were strongly affected by the various, terminal N‐substituents of the chelating bis(NHC) ligands. The results presented in this work indicate the potential of bis‐carbenes as stereodirecting ligands for asymmetric catalysis and are offering a base for further developments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The design and synthesis of three new C 2‐symmetric chiral diphosphoramidite ligands starting from simple and cheap building blocks have been developed. Rhodium(I) cationic complexes bearing these chelate ligands have been prepared and applied in asymmetric hydrogenation of model olefins. A rhodium complex with a diphosphoramidite containing a chiral diamine configurationally stable and two fluxional chiral biphenyl units gave higher enantioselectivity with increasing hydrogen pressure (87% ee) in the hydrogenation of dimethyl itaconate.  相似文献   

7.
Cationic substitutionally inert cyclometalated ruthenium (II) and osmium (II) complexes, ([Mt(o‐C6H4‐2‐py)(LL)2]PF6), where LL‐1,10‐phenanthroline (phen) or 2,2′‐bipyridine (bipy), were used for radical polymerization of styrene. Gradual modification of the complexes within the series allowed comparison of the catalytic activity and the redox properties. There was no correlation between the reducing powers of the complexes and their catalytic activities. The osmium compound of the lowest reduction potential was not active. All the ruthenium complexes catalyzed the polymerization of styrene in a controlled manner; but the level of control and the catalytic activity were different under the same polymerization conditions. [Ru(o‐C6H4‐2‐py)(phen)2]PF6 demonstrated the best catalytic performance though its redox potential was the highest. It catalyzed the “living” polymerization with a reasonable rate at a catalyst‐to‐initiator ratio of 0.1. 1 equiv. of Al(OiPr)3 accelerated the polymerization and improved the control, but higher amount of Al(OiPr)3 did not speed up the polymerization and moved the process into the uncontrollable regime. Under the most optimal conditions, the controlled polymerization occurs fast without any additive and the catalyst degradation. Added free ligands inhibited the polymerization suggesting that the catalytically active ruthenium intermediates are generated via the reversible dechelation of bidentate phen or bipy ligands. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3814–3828, 2009  相似文献   

8.
A series of are necyc lope ntadienyl complexes,i. e., [Ru(5-c5R5)(6- are ne)]+ (1, R= H, arene = C6H6; 2, R = Me, arme = C6H6; 3, R = H, arctic = C6H3Me3; 4, R = Me, arene = C6H3Me3; 5, R = H, arene = C6Me6; 6, R = Me, arene = C6Me6) was studied by cyclic voltammetry. These compounds are capable of both oxidation and reduction. The reduction potential values depend on the number of methyl groups in the complex. Reduction of benzene complexes I and 2 by sodium amalgam in THF leads to the formation of decomplexation products, the addition of hydrogen to benzene, and dimerization of the benzene ligands. Both chemical and electrochemical reductions of mesitylene complexes3 and4 result in dimeric products [(5-C5R5)Ru(-5;5-Me3H3C6H3Me3)Ru(5-C5R5)] (14, R = H; 15, R = Me). The action of sodium amalgam on compound5 gives products of hydrogen addition to both hexamethylbenzene (17) and cyclopentadienyl (18) ligands along with the major product, the dimer [5-C5H5)Ru(-5; 5-Me6C6C6Me6)Ru(5-C5H5)] (16). In contrast to5, its permcthylated analog 6 is only capable of adding hydrogen to the hexamethylbenzene ligand.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1691–1697, July, 1996.  相似文献   

9.
10.
Two new six-coordinate Grignard reagents, cis-[(p-CH(3)C(6)H(4))MgBr(dme)(2)] (1) and cis-[MgCH(3)(thf)(dme)(2)]I (2), have been synthesized and their crystal structures have been determined. Both reagents are cis-octahedral and therefore chiral. They crystallize as conglomerates and racemize rapidly in solution. By utilizing these properties, the absolute asymmetric synthesis of specifically the Delta or the Lambda enantiomer was achieved for both Grignard reagents. Enantiopure 1 and 2 were then reacted with butyraldehyde or benzaldehyde to give the corresponding alcohol in up to 22 % enantiomeric excess. At -60 degrees C, the Grignard reagents crystallize as racemic phases instead of conglomerates. Consequently, the crystal structures of rac-cis-[(p-CH(3)C(6)H(4))MgBr(dme)(2)].DME (3) and rac-cis-[MgCH(3)(thf)(dme)(2)]I (4) could be determined.  相似文献   

11.
Structural studies were performed on catalytically active ruthenium(II) complexes used in interphases, by means of XAFS spectroscopy. The EXAFS investigations indicate that the complexes retain their structural integrity when they are embedded on polysiloxane matrices to form stationary phase materials. The AXAFS studies reveal that the variations in the catalytic activity of the complexes with different ligands can be correlated to the differences in the electronic structure around the active ruthenium center. The EXAFS investigations show that, in asymmetric transfer hydrogenation reactions catalysed by ruthenium(II) complexes, the co‐catalyst plays a crucial role not only in enhancing the catalytic activity, but also in determining the structure of the intermediate species. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
13.
p-Phenylenediamine bearing terminal bipyridyl moieties was synthesized by palladium-catalyzed amination. The corresponding ruthenium(II) complex was formed and characterized, providing a redox-switchable photoinduced electron-transfer system.  相似文献   

14.
15.
钌卟啉配合物化学研究进展   总被引:5,自引:0,他引:5  
李早英  黄杰生 《有机化学》1997,17(3):203-214
本文从三方面介绍了钌卟啉配合物化学的研究进展。较详细地讨论了各种类型钌卟啉配合物的制备方法; 总结了钌卟啉配合物的结构特征及常见的结构表征方法; 并从几方面展示了钌卟啉配合物的应用及发展前景。  相似文献   

16.
17.
18.
The complex trans,cis‐[RuCl2(PPh3)2(ampi)] (2) was prepared by reaction of RuCl2(PPh3)3 with 2‐aminomethylpiperidine(ampi) (1). [RuCl2(PPh2(CH2)nPPh2)(ampi) (n = 3, 4, 5)] (3–5) were synthesized by displacement of two PPh3 with chelating phosphine ligands. All complexes (2–5) were characterized by 1 H, 13C, 31P NMR, IR and UV‐visible spectroscopy and elemental analysis. They were found to be efficient catalysts for transfer hydrogen reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
DNA binding and photocleavage characteristics of a series of mixed-ligand complexes of the type [M(phen)2LL]n+ (where M = Co(III), Ni(II) or Ru(II), LL = 1,10-phenanthroline (phen), phenanthroline-dione (phen-dione) or dipyridophenazine (dppz) andn = 3 or 2) have been investigated in detail. Various physico-chemical and biochemical techniques including UV/Visible, fluorescence and viscometric titration, thermal denaturation, and differential pulse voltammetry have been employed to probe the details of DNA binding by these complexes; intrinsic binding constants (K b) have been estimated under a similar set of experimental conditions. Analysis of the results suggests that intercalative ability of the coordinated ligands varies as dppz>phen>phen-dione in this series of complexes. While the Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled pBR 322 DNA, the corresponding Ni(II) complexes are found to be inactive under similar experimental conditions. Results of detailed investigations carried out inquiring into the mechanistic aspects of DNA photocleavage by [Co(phen)2(dppz)]3+ have also been reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号