首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this study, we have proposed a novel strategy for the rapid identification and high sensitive detection of different kinds of cancer cells by means of electrochemical and contact angle measurements. A simple, unlabeled method based on the functionalized Au nanoparticles (GNPs) modified interface has been utilized to distinguish the different cancer cells, including lung cancer cells, liver cancer cells, drug sensitive leukemia K562/B.W cells and drug resistant leukemia K562/ADM cells. The relevant results indicate that under optimal conditions, this method can provide the quantitative determination of cancer cells, with a detection limit of ∼103 cells mL−1. Our observations demonstrate that the difference in the hydrophilic properties for target cellular surfaces and in the uptake efficiency of the anticancer drug daunorubicin for different cancer cells could be readily chosen as the elements of cancer identification and sensitive detection. This raises the possibility to advance the promising clinic diagnosis and monitoring of tumors with the aim of successful chemotherapy of human cancers.  相似文献   

2.
As one of the active compounds derived from Traditional Chinese Medicine,Celastrol(CSL)had cytotoxicity for human leukemia cancer cells K562 and its multidrug-resistant cell line K562/A02.Here,we introduced cysteamine-modified CdTe QDs as the labeling and drug carrier into CSL research and found that the self-assembly and conjugation of anticancer molecular CSL with the Cys-CdTe QDs could significantly increase the drug’s cytotoxicity for K562 cells.More important,these CSL-Cys-CdTe nanocomposites could overcome the multidrug resistance of K562/A02 cells and efficiently inhibit the cancer cell proliferation by realizing the pH-sensitive responsive release of CSL to cancer cells.The enhanced cytotoxicity was caused by the increase of the G2/M phase arrest for K562/A02 cells as well as for K562 cells.Cys-CdTe QDs can readily bind on the cell plasma membranes and be internalized into cancer cells to trace and detect human leukemia cancer cells in real time.In addition,these Cys-CdTe QDs can facilitate the inhibition of the multidrug resistance of K562/A02 cells and readily induce apoptosis.As a good photosensitizer for the therapy,labeling,and tracing of cancer cells,the combination of CSL with Cys-CdTe QDs can optimize the use of and a new potential therapy method for CSL and yield new tools to explore the mechanisms of active compounds from Traditional Chinese Medicine.  相似文献   

3.
4.
A new electrochemical cell sensor, with low cost, simple fabrication, high selectivity and sensitivity was developed in this study. Titanium dioxide nanoparticles (nano-TiO2) were assembled on the disposable indium tin oxide (ITO) electrodes for the immobilization of the drug sensitive leukemia K562/B.W. cells and drug resistant leukemia K562/ADM cells to fabricate the relative cell sensors. The different electrochemical behaviors of the probe allowed us to differentiate one type of leukemia cells from another. Furthermore, the results of electrochemical impedance spectroscopy indicated that the detection limit of the new cell sensor is 1.3 × 103 cells ml?1 with a linear range of 1.6 × 104 to 1.0 × 107 cells ml?1. These results suggested the promising application of this nano-TiO2 interface to construct the non-labeling potential-discriminative cell biosensors for clinical uses.  相似文献   

5.
The cyanine dye 1,1',3,3,3',3'-hexamethylindodicarbocyanine iodide (HIDC) protects K562 leukemia cells from photodynamic membrane damage caused by cis-di(4-sulfonatophenyl)diphenylporphine (TPPS2) and 420 nm light. This wavelength of light is chosen because it is absorbed by TPPS2, but not by HIDC. The photodynamic system studied may be useful as a model for antineoplastic therapy. A subline of K562 leukemia (K562/DOX), expressing the multidrug-resistance (MDR) phenotype, is found to accumulate smaller amounts of HIDC than the parent cell line and thus has less photoprotection. In the absence of added HIDC, the K562/DOX cell line is more resistant to photodynamic cytotoxicity than the K562 cell line. The resistance of the K562/DOX cell line is not due to a smaller accumulation of TPPS2 than the K562 cell line. However, when both cell lines are incubated with HIDC and TPPS2, and then exposed to light, the K562/DOX cell line becomes more sensitive to photodynamic cell damage than the K562 cell line. The combination of a photosensitizer with a cationic or lysomorphotropic photoprotector represents a novel strategy for the eradication of malignant cells expressing the MDR phenotype.  相似文献   

6.
Novel nanocomposites of polylactide (PLA) nanofibers and tetraheptylammonium-capped Fe3O4 magnetic nanoparticles have been prepared and utilized to realize the efficient accumulation of anticancer drug daunorubicin in target cancer cells. The observations of optical microscopy and confocal fluorescence microscopy indicate that the PLA nanofibers and Fe3O4 nanoparticles may contribute to their beneficial effects on intracellular drug uptake of leukemia K562 cell lines in which the efficiently enhanced accumulation of anticancer drug daunorubicin on the membrane of cancer cells could be observed. Meanwhile, the electrochemical detection and the microculture tetrazolium studies were also explored to probe the effect of the relevant nanomaterials on the drug uptake of cancer cells. The results illustrate that the nanocomposites could effectively facilitate the interaction of daunorubicin with leukemia cells and remarkably enhance the permeation and drug uptake of anticancer agents in the cancer cells, which could readily lead to the induction of the cell death of leukemia cells. This observation suggests a new perspective for the targeted therapeutic approaches of cancers.  相似文献   

7.
Graphene composites with hemin and gold nanoparticles show a better performance for hydrogen peroxide decomposition compared to that of the three components alone or duplex/hybrid complexes. Our previous studies showed that the morphology of the Au nanoparticles may greatly influence the catalytic activity of graphene‐family peroxidase mimics. Recently, we found that Au nanoflowers could grow in situ and form on the surface of hemin/RGO (reduced graphene oxide). The prickly morphology of this Au nanoflower brought a higher catalytic ability with enhanced kinetic parameters than traditional Au nanoparticles that showed a smooth surface. Therefore, based on this discovery, a smart electrochemical aptamer biosensor for K562 leukemia cancer cells was further presented with good performance in selectivity and sensitivity attributed to the excellent mimetic peroxidase catalytic activity of this newly synthesized Au nanoflower decorated graphene–hemin composite (H‐RGO‐Au NFs).  相似文献   

8.
Oxidized single‐walled carbon nanotubes (o‐SWNTs) were employed as the drug carriers to deliver the small molecules of Rhodamine123 (Rho123) into the K562 cells via physical adsorption. However, due to the fluorescence quenching of Rho123 on carbon nanotubes, the quantitative determination of Rho123 in cells is difficult. Based on the MEKC coupled with LIF detection, a quantitative approach was developed for the determination of Rho123 delivered into K562 cells by o‐SWNTs. Where the adsorbed Rho123 on o‐SWNTs could be desorbed by SDS in running buffer and be simultaneously separated with o‐SWNTs due to the differences of their electrophoretic mobility by applying the electric potential at the both ends of capillary. Using this approach, the intracellular uptakes of Rho123 in multidrug‐resistant and multidrug‐sensitive leukemia cells were quantified, and the results showed that o‐SWNTs could be used as the potential drug carriers to deliver small molecules into cells via the physical adsorption along with the circumventing of multidrug resistance of leukemia cells.  相似文献   

9.
用化学降解法制备不同分子量的壳聚糖 ,以其为原料合成了系列N 琥珀酰壳聚糖 ,然后用异硫氰酸荧光素进行荧光标记 ,再与K5 6 2肿瘤细胞共孵育 ,通过流式细胞仪检测细胞的荧光强度来确定不同分子量N 琥珀酰壳聚糖与K5 6 2肿瘤细胞间亲和性的强弱 ,为靶向抗肿瘤药物载体的研究提供初步的参考 .结果表明N 琥珀酰壳聚糖和K5 6 2肿瘤细胞间有较强的亲和性 ,随着分子量的增加 ,其亲和性逐渐减弱 .  相似文献   

10.
《Electroanalysis》2017,29(3):828-834
A simple and rapid electrochemical aptamer cytosensor has been developed for direct detection of chronic myelogenous leukemia (CML) K562 cells based on a specific aptamer and a biotin conjugated concanavalin A (bio‐ConA) detection probe. The K562 cell could be specifically recognized by T2‐KK1B10 capture aptamer pre‐immobilized on gold modified electrode surface. Then, bio‐ConA was added in the reaction to identify K562 cell surface mannose, resulting in an aptamer‐K562 cell‐bio‐ConA sandwich complex. Finally, streptavidin conjugated alkaline phosphatase (ST‐ALP) combined with the bio‐ConA to catalyze α‐naphthyl (α‐NP) phosphate to form α‐naphthol which is highly electroactive at an operating voltage of 180 mV (vs. Ag/AgCl). Under optimum conditions, the DPV signals were proportional to the logarithm of K562 cell from 1×102 to 1×107 cells mL−1 with a detection limit of 79 cells mL−1. The cytosensor also exhibited high selectivity, stability and reproducibility. When applied to detect K562 cells in human blood samples, recoveries between 79.6 %–93.3 % were obtained, indicating the developed biosensor would be a potential alternative tool for CML K562 cell detection in real biological samples.  相似文献   

11.
细胞膜P-糖蛋白(P-gp)介导的药物外流是肿瘤多药耐药(MDR)产生的重要机制,异黄酮类化合物可以通过抑制P-gp活性发挥MDR逆转作用.通过对P-gp抑制剂进行结构分析,以金雀异黄素为母体,在其7位、8位及4'位分别引进碱性边链,设计、合成了20个金雀异黄素衍生物(其中16个未见文献报道),并检测了其多药耐药逆转活性.结果表明,大多数目标化合物对人白血病耐药细胞株K562/A02具有不同程度的耐药逆转作用.其中目标化合物8a,8b,8d,8e逆转作用较强,逆转倍数分别为8.97,6.36,5.19和5.82.  相似文献   

12.
The cellular mechanism based on P-glycoprotein (PGP) for its drug pump function has become very important in multidrug resistance (MDR) research. A method has been established to characterize PGP on single K562 cell by coupling capillary electrophoresis with laser induced fluorescence detection. A permeable intact cell after the immunoassay binding with fluorescence labeling antibody was injected into the capillary and directly separated without lysis. It was found that once 5-10 optional cells were detected in batch, the PGP amount on this cell line could be outlined and calculated clearly. The PGP amount on K562 MDR cell line is 3.88 times higher than that on K562 sensitive cell line. These two cell lines with immunoassay binding were also analyzed by injection of multi-cells in order to improve the throughput. A resistance factor so called multidrug resistance multiple (MRM) was introduced to evaluate the MDR difference between cell lines. The MRM values of the cell line K562 measured by single cell analysis are well correlated with those by flow cytometry, which also prove the validity of our method in single cell analysis for the possibility of cancer diagnosis, pharmacokinetics and drug screening in future.  相似文献   

13.
设计、合成了一系列聚异戊二烯基三胺化合物,目标化合物结构均经过核磁共振谱、质谱及元素分析确认;利用MTT法测试了目标化合物对人白血病细胞K562和人肝癌细胞Bel-7402的体外抗肿瘤活性.结果表明,目标化合物对两种肿瘤细胞的生长均有较强的抑制活性.  相似文献   

14.
In the investigation for alternative chemotherapeutic strategies against leukemia, Pd(II) complexes were synthesized and investigated for cytotoxic and apoptotic properties on two human leukemia cell lines (HL-60 and K562). Pd(II) complexes (Pd-5a and Pd-6a) with 5a and 6a as ligands were synthesized and characterized by 1H-NMR and F-TIR. The cytotoxicity of the compounds was quantified using MTT method. Bax, Bcl-2, and caspase 3 gene expression levels were estimated using RT-qPCR. Here we show that Pd(II) complexes have important cytotoxic activity on human leukemia cell lines. RT-qPCR indicated that Bax and caspase 3 gene expression levels were increased after 24 h treatment with Pd-5a and Pd-6a complexes in both HL-60 and K562 cells at some selected dose. Furthermore, Bcl-2 gene expression level decreased after 24 h treatment with Pd-5a and Pd-6a complexes in K562 cells at all selected dose. In HL-60 cells, only one selected Pd-5a dose (25 µM) decreased the gene expression level of Bcl-2. The results obtained in the present investigation indicate that these two newly synthesized Pd(II) complexes have apoptotic effects at appropriate doses through caspase 3 and Bax genes and might represent a novel potentially active agents for the management of human leukemia cell lines.  相似文献   

15.
Yu L  Shen Z  Mo J  Dong X  Qin J  Lin B 《Electrophoresis》2007,28(24):4741-4747
In this work, the electrophoretic mobility (EPM) measurement of individual cells was investigated by a simple on-chip electrophoresis system with LIF multipoint detection. The system enabled the characterization of cell electrophoresis behavior as well as the fluorescence signal from individual cells simultaneously. The measurement yielded the electropherograms of a large number of cells labeled with dye, in which the migration time and migration distance could be obtained easily. The EPM has been demonstrated to be different between the K562 cells and K562 cells treated with anticancer drug arsenic trioxide (As2O3). The K562 cells were found to exhibit a lower EPM compared to the cells after drug addition with different concentration. In this preliminary study, over 300 cells could be analyzed within 2 h, demonstrated a much higher analysis throughput compared with traditional methods. The established system is simple and fast, which is expected to be a promising method for evaluating cell surface properties and to be useful in clinical and pharmaceutical applications.  相似文献   

16.
A new zwitterionic monolayer film of sulfobetaine was constructed by grafting novelly designed N,N-dimethyl (beta-hydroxyethyloxyethyl) ammonium propanesulfonate (DHAPS) to hydroxyl groups of glass in the presence of hexamethylene diisocyanate (HDI) as a coupling agent and dibutyltin dilaurate (DBTDL) as a catalyst. Experiments of blood adhesion proved that the zwitterionic film possessed excellent hydrophilicity and very good biocompatibility and provided an appropriate biomimetic interface for adhesion and proliferation of cells. Thus, the monitoring of the cell proliferation and apoptotic processes on the zwitterionic surface during an incubation process was achieved, using different techniques, such as electrochemical impedance spectroscopy, scanning electron microscopy, flow cytometric assay, and Trypan blue staining. K562 leukemia cells, as a model, cultured in vitro on the zwitterionic surface kept their viability for 5 days and remained healthy and undifferentiated, indicating that the zwitterionic surface did not have a deleterious effect on cell growth in normal conditions. Thus, this man-made interface would be applicable to the growth of cells and the study of biomaterial-cell interaction and has potential applications in medicine and cytobiology.  相似文献   

17.
Thirteen xanthones (1-13) were isolated from the resin of Garcinia hanburyi. Among them, two new compounds (namely gaudichaudic acid, and isogambogenic acid, 1, 2), and one new natural product (deoxygaudichaudione A, 3) were identified on the basis of extensive spectral evidence including detailed 2D NMR data. Ten of these xanthones were tested for their cytotoxicities against human leukemia K562 (K562/S) and doxorubicin-resistant K562 (K562/R) cell lines, and showed similar inhibitory effects on both cell lines, suggesting that this group of polyprenylated xanthones might not be multidrug resistance (MDR) substrates.  相似文献   

18.
19.
K562 is the chronic myelogenous leukemia (CML)-derived cell line that expresses high levels of chimeric oncoprotein Bcr-Abl. The deregulated (permanent) kinase activity of Bcr-Abl leads to continuous proliferation of K562 cells and their resistance to the apoptosis promotion by conventional drugs. The photodynamic treatment (PDT) based on the application of 5-aminolevulinic acid (ALA) and irradiation with blue light (ALA-PDT) resulted in the suppression of K562 cells proliferation. It was followed by a necrosis-like cell death [K. Kuzelová, D. Grebenová, M. Pluskalová, I. Marinov, Z. Hrkal, J. Photochem. Photobiol. B 73 (2004) 67-78]. ALA-PDT led to the perturbation of the Hsp90/p23 multichaperone complex of which the Bcr-Abl is the client protein. Bcr-Abl protein was suppressed whereas the bcr-abl mRNA level was not affected. Further on, we observed several changes in the cytoskeleton organization. We detected ALA-PDT-mediated disruption of filamental actin structure using FITC-Phalloidin staining. In connection with this we uncovered certain cytoskeleton organizing proteins involved in the cell response to the treatment. Among these proteins, Septin2, which plays a role in maintaining actin bundles, was suppressed. Another one, PDZ-LIM domain protein 1 (CLP36) was altered. This protein acts as an adaptor molecule for LIM-kinase which phosphorylates and thus inactivates cofilin. Cofilin was indeed dephosphorylated and could thus be activated and operate as an actin-depolymerizing factor. We propose the scheme of molecular response of K562 cells to ALA-PDT.  相似文献   

20.
The change in electrochemical behavior of tumor cells induced by antitumor drugs was detected by using a multiwall carbon nanotubes (MWNTs)-modified glass carbon electrode (GCE). Based on the changes observed, a simple, in vitro, electrochemical antitumor drug sensitivity test was developed. MWNTs promoted electron transfer between the electroactive centers of cells and the electrode. Leukemia K562 cells exhibited a well-defined anodic peak of guanine at +0.823 V at 50 mV s(-1). HPLC assay with ultraviolet detection was used to elucidate the reactant responsible for the electrochemical response of the tumor cells. The guanine content within the cytoplasm of each K562 cell was detected to be 920 amol. For the drug sensitivity tests, 5-fluorouracil (5-FU) and several clinical antitumor drugs, such as vincristine, adriamycin, and mitomycin C, were added to cell culture medium. As a result, the electrochemical responses of the K562 cells decreased significantly. The cytotoxicity curves and results obtained corresponded well with the results of MTT assays. In comparison to conventional methods, this electrochemical test is highly sensitive, accurate, inexpensive, and simple. The method proposed could be developed as a convenient means to study the sensitivity of tumor cells to antitumor drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号