首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In CaCO3, biomineralization nucleation and growth of the crystals are related to the presence of carboxylate-rich proteins within a macromolecular matrix, often with organized beta-sheet domains. To understand the interplay between the organic template and the mineral crystal it is important to explicitly address the issue of structural adaptation of the template during mineralization. To this end we have developed a series of self-organizing surfactants (1-4) consisting of a dodecyl chain connected via a bisureido-heptylene unit to an amino acid head group. In Langmuir monolayers the spacing of these molecules in one direction is predetermined by the hydrogen-bonding distances between the bis-urea units. In the other direction, the intermolecular distance is determined by steric interactions introduced by the side groups (-R) of the amino acid moiety. Thus, by the choice of the amino acid we can systematically alter the density of the surfactant molecules in a monolayer and their ability to respond to the presence of calcium ions. The monolayer films are characterized by surface pressure-surface area (pi-A) isotherms, Brewster angle microscopy, in-situ synchrotron X-ray scattering at fixed surface area, and also infrared reflection absorption spectroscopy (IRRAS) of films transferred to solid substrates. The developing crystals are studied with scanning and transmission electron microscopy (SEM, TEM), selected area electron diffraction (SAED), and crystal modeling. The results demonstrate that although all compounds are active in the nucleation of calcium carbonate, habit modification is only observed when the size of the side group allows the molecules to rearrange and adapt their organization in response to the mineral phase.  相似文献   

2.
Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.  相似文献   

3.
Using the Langmuir technique, we have studied the properties at the air/water interface and the interaction of the hepatitis G virus synthetic peptide E1(53-66) and its palmitoyl derivative with membrane phospholipids. These phospholipids had different characteristics referring to the net charge and saturation of the acyl chain. The palmitoyl derivative was more stable at the air/water interface and in the kinetic at constant area measurements showed higher incorporation to the monolayer. The interaction was higher for saturated phospholipids and those with a negative net charge. When the peptides were in the subphase, they produced changes in the miscibility of mixed monolayers composed of DPPC/DPPG or DOPC/DOPG. It can be deduced from the results obtained that electrostatic interactions play a major role, but when the peptide is derivatized with the palmitoyl chain, hydrophobic interactions are added to the former ones. The interaction is also influenced by the saturation of the acyl chain.  相似文献   

4.
Alamethicin (ALM), a 20-amino acid antibiotic peptide (peptaibol) from fungal sources, was mixed in Langmuir monolayers with six different surfactants: semifluorinated (F6H18, F10H19, F8H10OH, F6H10SH) and hydrogenated (C18SH and DODAC), aimed at finding appropriate molecules for ALM incorporation for nanodevice construction. Alamethicin-containing mixed monolayers were investigated by means of surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM). Our results show that only semifluorinated alkanes can serve as an appropriate material since they form miscible and homogeneous monolayers with ALM within the whole concentration range. All the remaining surfactants, possessing polar groups, were found to demix with ALM. This effect was explained as being due to the existence of strong polar interactions between vertically oriented surfactant molecules, which tend to separate from horizontally oriented alpha-helices of the peptide. On the contrary, semifluorinated alkanes, lacking any polar group in their structure and bearing a large dipole moment, interact with ALM, also possessing a huge cumulative dipole moment. These dipole-dipole interactions between ALM and SFAs are more attractive than those between SFA molecules in their pure monolayers, causing the large ALM molecule, situated parallel to the interface, to be surrounded by SFA molecules in perpendicular orientation, leading to the formation of a highly organized binary mixed monolayer. BAM images of the ALM monolayer indicate that this peptide collapses with the nucleation and growth mechanism, like the majority of surfactants, which contradicts the model of ALM collapse by desorption, previously published in the literature.  相似文献   

5.
Monolayers of 1,1'-bi-2-naphthol (BN) derivatives, of which the two naphthalene rings are twisted along the carbon(1)-carbon(1') single bond, were studied for their conformational effect on the growth of pentacene crystals on their monolayer surface. BN monolayers with H and Br at 6,6'-positions (H-BN and Br-BN) were prepared by immersion-coating in toluene solution of the corresponding BNSiCl2. Pentacene was thermally evaporated onto the H-BN and Br-BN monolayers, silica, octadecylsilyl (ODTS) SAM, and a micropattern of H-BN and ODTS SAM. Pentacene crystals were also grown on the SAMs of 1-naphthylsilyl(NPh), phenylsilyl(Ph), and diphenylsilyl (DPh) groups, which are aromatic and have contact angle values similar to those of the the BN monolayers. AFM images of the crystals at the early stage of growth indicated that the BN monolayers suppressed the nucleation while facilitating the growth of nuclei to larger crystals. The low nucleation density and high growth rate are accounted for by the amorphous nature of the twisted BN monolayer surface where the intermolecular interaction between neighboring adsorbates is likely to be suppressed. The results offer new insights into designing surfaces for controlling the crystallization kinetics of organic materials.  相似文献   

6.
The HNP-1, HNP-2, and HNP-3 defensins are human antimicrobial peptides produced in response to microbial invasion. Their properties are distinct, with a more potent action for HNP-3. In this study, the relationship between their structural dissimilarities and their different microbial actions was evaluated by molecular dynamics simulation. Structural determinants related to their intra- and intermolecular interactions were defined for each HNP using a simplified membrane model consisting of a water/n-hexane interface. The hydrophobic portion of the HNPs promotes their diffusion to the interface with a concomitant, slight change in the structure induced by the intermolecular electrostatic interactions between the HPN molecules and the interface. As a consequence, different orientations are probably adopted by the HNPs at the interface, which may explain their different actions. The interaction of HNP-1 and HNP-2 with the surfaces was also studied using Langmuir monolayers as a biomimetic system. It was found that peptides adsorb rapidly at n-hexane/water interfaces as well as at phospholipid Langmuir monolayers but not at the air/liquid interface. This reveals that the presence of an organic phase is required for the exposure of the hydrophobic groups of the peptides. In addition, adsorption kinetics and surface pressure-area isotherms for Langmuir monolayers suggested that the lipid-peptide interaction is strongly influenced by the monolayer electrical charge and packing, depending also on the HPN structure. This study supports a model in which defensins, acting in a dimeric form, are able to disrupt membranes. The model also shows that the individual structures of the HNPs are responsible for their different actions on microbes.  相似文献   

7.
单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配   总被引:3,自引:0,他引:3  
有机基质与无机晶体的晶格几何匹配和静电相互作用是导致生物体内矿物有序生长并具有特殊理化性质的重要因素,但有机基质的作用机理至今没有完全弄清.作为模拟生物矿化的重要模板之一,Langmuir单分子膜具有独特的优势.本文综述了单分子膜诱导下生物矿物碳酸钙(文石、方解石和球霰石)、羟磷灰石、硫酸钡和纤铁矿等生长过程中的晶格匹配和电荷匹配,讨论了单分子膜亲水头基、膜的电荷性质、膜聚集态等因素对膜控晶体生长过程中晶格匹配和电荷匹配的影响,指出了该领域所面临的问题和将来的发展方向.  相似文献   

8.
The interactions of mixed monolayers of two lipids, zwitterionic 1,2-dipalmitoyl-phosphatidylcholine (DPPC) and positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), with phytohormone indolilo-3-acetic acid (IAA) and selenate anions in the aqueous subphase were studied. For this purpose, isotherms of the surface pressure versus the mean molecular area were recorded. Domain formation was investigated by using Brewster angle microscopy (BAM). The method of grazing incidence X-ray diffraction (GIXD) was also applied for the characterization of the organization of lipid molecules in condensed monolayers. It was found that selenate ions contribute to monolayer condensation by neutralizing the positive net charge of mixed monolayers whereas IAA molecules penetrated the lipid monolayer, causing its expansion/fluidization. When both solutes were introduced into the subphase, a competition between them for interaction with the positively charged lipids in the monolayer was observed.  相似文献   

9.
We study the Langmuir monolayers of four different ferroelectric liquid crystals on water surface. Two of them are attached to water surface by their polar groups, and the chiral groups, at the opposite ends of the elongated molecules, remain well above the interface. The other two ferroelectrics have both groups (polar and chiral) at close proximity, and therefore the chiral group is also attached to the surface or even submerged in water. We demonstrate that only when the chiral group of the ferroelectric liquid crystal in Langmuir monolayer is not attached to the interface and stays in the air does the system exhibit the collective rotations induced by evaporation of water (described for the first time by: Tabe, Y.; Yokoyama, H. Nat. Mater. 2003, 2, 806). The isotherms of surface pressure and surface potential versus molecular area of four compounds were measured with simultaneous observations using Brewster angle microscopy. Experimental data of the compression isotherms are described with a van der Waals model with very good accuracy, and the fitted parameters were used for calculations of compressibility coefficients for different phases found in the compounds under investigations. The ability of the two compounds for rotation and the disability of the two others is discussed in a context of thermodynamic properties of the monolayers.  相似文献   

10.
A study of dichroic dye-liquid crystal mixtures (guest-host systems) in monolayers formed at a gas-liquid interface (Langmuir films) and at a solid surface (Langmuir-Blodgett films) has been made. As a host 4- n -octyl-4'-cyanobiphenyl (8CB) or 4- n -pentyl-4"-cyano- p -terphenyl (5CT) were chosen, while three dichroic azo dyes with various molecular structures were used as guest species. The dyes were added to the liquid crystal matrices at a concentration corresponding to the whole range of molar fractions and the surface pressure-mean molecular area isotherms for Langmuir films were recorded. On the basis of the isotherms, conclusions about the molecular organization and the miscibility of the components in the ultrathin films were drawn. The Langmuir films were transferred onto the quartz plates at surface pressures below the collapse point. The polarized absorption spectra of the Langmuir-Blodgett films were recorded and information about the alignment and intermolecular interactions in the mixtures of the non-amphiphilic dichroic dyes and the liquid crystals with strongly polar terminal groups were obtained.  相似文献   

11.
The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2′-palmitoyluridin und 3′-palmitoyluridin, forms Langmuir monolayers and Langmuir–Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV–vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties.  相似文献   

12.
A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single‐crystal X‐ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self‐assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two‐dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl3 or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions.  相似文献   

13.
We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.  相似文献   

14.
This study investigated the relaxation behaviors of octadecylamine (ODA), stearic acid (SA), and SA/ODA mixed monolayers at the air/water interface. Area relaxations of monolayers at constant surface pressure were studied by a nucleation and growth mechanism and by direct observation using a Brewster angle microscope (BAM). The results showed that ODA and SA monolayers exhibit different characteristics in the area loss and in the BAM morphology. In the initial relaxation stage, SA monolayer illustrates a more stable characteristic than ODA. But at the later stage, the area loss of SA monolayer increases more quickly than that for ODA due to significant nucleation and growth of 3D aggregates. The BAM results demonstrated that 3D aggregates of large scale domains are likely to form on a SA monolayer even when the area loss is insignificant. On the contrary, only dotlike aggregates of low density were found on the ODA monolayer when relaxation is carried out at higher surface pressure. The relaxation behavior of SA monolayer can be described by the Vollhardt model. However, the relaxation of ODA monolayer does not follow the nucleation model described by Vollhard but can reasonably be attributed to the effect of dissolution. For the SA/ODA mixed monolayers, the relaxation behaviors in the initial and final stages follow different mechanisms, which is attributed to the formation of distinct phases as observed from the BAM. This result also implied that SA and ODA are not completely miscible to be a homogeneous phase. Phases of various compositions were formed in the mixed monolayers, and thus, the relaxation mechanism was shifted during the relaxation process as dominated by different relaxation behaviors of various phases.  相似文献   

15.
亚相pH值对磷脂单层下甘氨酸结晶过程的影响   总被引:1,自引:0,他引:1  
亚相pH值对磷脂单层下甘氨酸结晶过程的影响;Langmuir单分子层; 结晶; 取向; 形貌  相似文献   

16.
This article reviews the authors' experiments on calcium oxalate growth at lipid monolayers. Calcium oxalate is the principal mineral component of most urinary stones. Membrane constituents associate either actively or passively with calcific minerals during stone formation, and it has been proposed that lipid assemblies play a significant role, possibly providing sites for the initial nucleation event. Langmuir monolayers allow systematic studies of the heterogeneous precipitation of calcium oxalate at lipid assemblies. The influences of the chemical identity of the lipid headgroup, the organization of the monolayer, and the presence of heterogeneities and phase boundaries within the monolayer have been explored.  相似文献   

17.
The catalytic activity of a glycosylphosphatidylinositol (GPI)-anchored alkaline phosphatase has been studied in Langmuir phospholipid monolayers at different surface pressures. The enzyme substrate, p-nitrophenyl phosphate, was injected into the subphase of mixed enzyme/lipid Langmuir monolayers. Its hydrolysis product was followed by monitoring the absorbance at 410 nm in situ in the monolayer subphase of the Langmuir trough. Several surface pressures, corresponding to different molecular surface densities, were attained by lateral compression of the monolayers. The morphology of the monolayers, observed by fluorescence microscopy, showed three different types of domains owing to the heterogeneous partition of the enzyme within the mixed enzyme/lipid film. The catalytic activity was modulated by the enzyme surface density, and it increased until a pressure of 18 mN/m was reached, but it decreased significantly when the equilibrium in-plane elasticity (surface compressional modulus) increased more noticeably, resulting in alterations in the interface morphology. A model for the modulation of the enzyme orientation and catalytic activity by lipid/enzyme surface morphology and enzyme surface packing at the air/liquid interface is proposed. The results might have an important impact on the comprehension of the enzymatic activity regulation of GPI-anchored proteins in biomembranes.  相似文献   

18.
H. M  hwald  C. B  hm  A. Dietrich  S. Kirstein 《Liquid crystals》1993,14(1):265-277
Langmuir monolayers at the air/water interface are distinguished by their richness of phases. These can be assigned to smectic categories, although the dominant competing interactions are not yet well elaborated. For single chain compounds, there are van der Waals attractions of the chains and repulsive forces of the head groups competing in determining the local structure. For larger molecules like phospholipids there appear also to be important dipolar interactions of the head groups. In order to study these interactions, we report surface X-ray diffraction studies of films of fatty acids and phospholipids at the air/water interface, with varying environmental parameters, as well as head group size and shape. We observe a wealth of mesophases and also the influence of molecular chirality on the structure. The defined control of the monolayer structure can be made use of to control crystal formation by diffusion from the subphase and nucleation at the interface. This is studied spectroscopically, microscopically and via electron diffraction of transferred films of cyanine dyes. In that case one observes epitaxy between the dye crystal and surfactant layer, and the relative lattices can be varied via suitable dye mixtures. A very peculiar interfacial influence results from the orientation of molecular dipoles at the interface. This causes long-range repulsive interactions leading to periodic superlattices in two phase coexistence regions. These forces are observed and quantified via fluorescence microscopy.  相似文献   

19.
Spectra of octadecylamine (ODA) Langmuir monolayers and egg phosphatidylcholine (PC)/ODA-mixed monolayers at the air-water interface have been acquired. The organization of the monolayers has been characterized by surface pressure-area isotherms. Application of polarized optical microscopy provides further insight in the domain structures and interactions of the film components. Surface-enhanced Raman scattering (SERS) data indicate that enhancement in Raman spectra can be obtained by strong interaction between headgroups of the surfactants and silver particles in subphase. By mixing ODA with phospholipid molecules and spreading the mixture at the air-water interface, we acquired vibrational information of phospholipid molecules with surfactant-aided SERS effect.  相似文献   

20.
Sum-frequency spectroscopy (SFS) in the CH and OH stretching regions was employed to obtain structural information about Langmuir monolayers on the H(2)O subphase of the model lipid dioctadecyldimethylammonium bromide (DOMA) and of the neutral surfactant methyl stearate (SME) and their mixtures and about the interfacial water structure underneath the films. These results were compared with the sum-frequency spectra of the interface between Langmuir monolayers of stearic acid and stearic acid-DOMA monolayers and water to prove that the uncompensated headgroup charge of DOMA at the interface is the reason for structuring of interfacial water close to the studied monomolecular films. Sum-frequency spectra on D(2)O subphase were also studied to account for the interference between the CH and OH spectral signatures because of the coherent nature of the SFS signals. Interfacial water structure proved to be a determining factor in the behavior of the mixed lipid monolayers. A mixing induced amplification in the surface potential DeltaV observed in our previous work was explained with total increase of the dipole moment for the mixed films, bigger than the arithmetic average for DOMA and SME monolayers alone. The increase is due to the better packing of the molecules in the mixed films and to the decrease in the interfacial water dipole moment arising from a more disordered water structure underneath the mixed monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号