首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li T  Zhu K  He S  Xia X  Liu S  Wang Z  Jiang X 《The Analyst》2011,136(14):2893-2896
We developed a simple, non-enzymatic approach for the colorimetric detection of glucose based on a gold nanoparticles (Au NPs) assisted silver mirror reaction (AuSMR). The linear range of the concentration of glucose is from 0.04 mM to 1 mM, and the lowest concentration that can be distinguished by the naked eye is 10 nM. This approach has been successfully used for detecting glucose in serum.  相似文献   

2.
Novel silver clusters have been prepared by simply carrying out the silver mirror reaction on certain reactive substrates. Leaflike fractal silver microstructures and perpendicularly aligned silver nanosheets were produced on a commercially available copper foil and sandpaper-rubbed copper foil, respectively. The surface features of copper foils and the chemical state of Cu atoms play important roles in regulating the morphological structures of the resulting silver clusters. Silver nanoclusters with various morphologies ranging from the leaflike to flowerlike hierarchical structures can be produced from the silver mirror reaction on commercially available copper foils after being treated with a dilute aqueous HCl solution under different conditions. The aqueous solution of silver nanosheets shows an optical absorption spectrum with a broad light-scattering peak at about 350 nm, compared to a corresponding surface plasmon absorption band around 430 nm for silver nanoparticles from the conventional silver mirror reaction on glass.  相似文献   

3.
Catalytic properties of silver nanoparticles supported on silica spheres   总被引:3,自引:0,他引:3  
In this work, we investigate the catalytic properties of silver nanoparticles supported on silica spheres. The technique to support silver particles on silica spheres effectively avoids flocculation of nanosized colloidal metal particles during a catalytic process in the solution, which allows one to carry out the successful catalytic reduction of dyes. The effects of electrolytes and surfactants on the catalytic properties of silver particles on silica have been investigated. It is found that the presence of surfactants depresses the catalytic activity of the silver particles to some extent by inhibiting the adsorption of reactants onto the surface of the particles. Electrolytes either increase the migration rate of reactants in the solution resulting in an increase in the catalytic reaction rate or inhibit the adsorption of reactants onto the surface of the silver particles leading to a loss in the activity of the metal particles.  相似文献   

4.
Colloidal silver particles were successfully prepared by wet chemical synthesis. The pure single phase of silver was confirmed by X-ray diffraction. Transmission electron microscope categorized that the diameters of particles were 100 and 20 nm, depending on the molecular weight of the PVP stabilizer. A schematic drawing model was used to predict the packing efficiency of 1:1 wt% of two mixtures. The mixture of silver solution was deposited as a thin solid film by a desktop inkjet printer. Scanning electron microscope showed that two different sizes of silver particles give higher densely packed structure than the film of single particle size. When a 0–20 V voltage was applied, the current density reached was 0.10 J/cm2, suggesting that the silver film has potential to be applied as a cathode layer in organic light emitting diode (OLED) devices.  相似文献   

5.
Synthesis of ω-alkenyl-terminated silver nanoparticles (AgNPs) and then their immobilization on a hydrogen-terminated silicon surface in two-dimensional arrangement through covalent interaction are demonstrated. The thermal-induced hydrosilylation at mild conditions facilitate nanoparticles assembly through interaction between terminal alkenyl (CH(2)=CH-) groups of AgNPs and hydrogen-terminated silicon surface. The assembly of AgNPs on a silicon surface is characterized by FESEM and XPS. Adequate coating of 10-undecene-1-thiol (UDT) on AgNPs and mild temperature hydrosilylation impede the fusion or aggregation of nanoparticles, while they immobilized on a silicon surface, which is very crucial to preserve the discrete entities of nanoparticles. This elegant and facile approach provides stable monolayer of AgNPs with very good coverage area and promises potential to fabricate electronic devices and solar cells, where nanoparticles needs to be directly attached to the silicon surface without an interfacial oxide thin film.  相似文献   

6.
NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 °C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products’ morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from ∼70 to ∼200 m2 g−1. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g−1. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity.  相似文献   

7.
One-dimensional assembly of gold nanoparticlesis achieved by a sphere-to-cylinder transformation of polymer shells. A large amount of monomers remains after the assembly, which is characteristic of the chain-growth "polymerization". Single-line chains can be converted to double-line chains, thus substantiating the unique role of the polymer shell.  相似文献   

8.
The optical absorption of colloidal suspensions made of silver nanoparticles with polyhedral shapes is studied experimentally and theoretically. The influence of the shape on the optical response is investigated by comparing the measured absorbance with theoretical results for icosahedral, decahedral, and cuboctahedral silver nanoparticles. The theoretical spectra are obtained within the discrete dipole approximation. We find that colloidal suspensions of silver nanoparticles with a small dispersion of size distribution show very few structural shapes.  相似文献   

9.
A simple and cost-effective chemical method was introduced to assemble gold (Au) nanoparticles on smooth silver (Ag) spheres for realizing surface-enhanced Raman scattering (SERS) enhancement by the replacement reaction between chloroauric acid and Ag spheres. In addition, the Ag-Au core-shell spheres were fabricated when a certain amount of chloroauric acid was used in the reaction solution. We found that the Ag particles decorated with small Au nanoparticles demonstrated the strongest SERS enhancement, while Ag-Au core-shell spheres showed the weakest enhancement.  相似文献   

10.
Spontaneous formation and efficient stabilization of colloidal silver nanoparticles were achieved in aqueous four-arm star poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solution at ambient temperature in the absence of any other reducing agent. In this reaction, four-arm star PDMAEMA acted as both reducing and stabilizing agents for silver nanoparticles. More importantly, four-arm star PDMAEMA is a tertiary-amine-containing star homopolymer, which shows that the scope of the reducing and stabilizing agents for metal nanoparticles can be extended from the general homopolymers and the block copolymers to the water-soluble simple tertiary-amine-containing star homopolymers. Fourier transform infrared, UV–vis absorption spectroscopy, and transmission electron microscopy were used to characterize the synthetic silver nanoparticles. A plausible mechanism for the formation of silver nanoparticles was proposed in the presence of linear and star PDMAEMA homopolymers. Moreover, the size of the resultant silver nanoparticles can be easily tuned by changing the concentrations of AgNO3.  相似文献   

11.
12.
Silver nanoparticles (NPs) were synthesized in organic solvents. Spontaneous reduction of silver salts takes place in N,N′-dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) at room temperature. The formed colloids are not stable without a stabilizing agent, hence rarely used, and inexpensive organic molecules (β-cyclodextrin and cholic acid) were used as surface modifiers in DMF. The stabilization was successful; the Ag NPs remained stable for more than 3 months. Additionally, Ag NPs were prepared using Ag-2-ethylhexanoate and Na-citrate as capping agent in DMSO. The resulting NPs are stable, of 4.4 nm average size, and at the same time reactive for catalytic purposes. The interaction of Ag NPs with pollutant atmospheric gases (NO and SO2) was studied. UV–visible spectra show the oxidation of silver and the very efficient reduction of NO at room temperature. SO2 molecules are adsorbed on the NPs surface, causing their aggregation and precipitation.  相似文献   

13.
Micrometric grains of anisotropic morphology have been achieved by evaporation-induced self-assembly of silica nanoparticles. The roles of polymer concentration and its molecular weight in controlling the buckling behavior of drying droplets during assembly have been investigated. Buckled doughnut grains have been observed in the case of only silica colloid. Such buckling of the drying droplet could be arrested by attaching poly(ethylene glycol) on the silica surface. The nature of buckling in the case of only silica as well as modified silica colloids has been explained in terms of theory of homogeneous elastic shell under capillary pressure. However, it has been observed that colloids, modified by polymer with relatively large molecular weight, gives rise to buckyball-type grains at higher concentration and could not be explained by the above theory. It has been demonstrated that the shell formed during drying of colloidal droplet in the presence of polymer becomes inhomogeneous due to the presence of soft polymer rich zones on the shell that act as buckling centers, resulting in buckyball-type grains.  相似文献   

14.
In situ ATR-FTIR monitoring has allowed the direct study of the effect of additives (trioctylphosphine oxide [TOPO] and oleic acid) on the kinetics and rate of the thermal decomposition of dicobalt octacarbonyl leading to the formation of colloidal cobalt nanoparticles (CoCNPs). The study has shown that additives usually considered as simple surfactants influence the rate and kinetics of the decomposition of dicobalt octacarbonyl. Several of the initial intermediates connecting Co2(CO)8 with CoCNPs have been identified, and a tentative mechanism for the formation of the colloidal nanoparticles has been proposed.  相似文献   

15.
Polymerization reactions of colloidal silica spheres via the hydrolysis and dehydration processes of tetraethyl orthosilicate with ammonia and a tiny amount of water in ethyl alcohol have been studied in microgravity by the parabolic flights of a MU-300 rear-jet aircraft. Induction periods and polymerization rates are determined by fast-scanning transmitted-light-intensity measurements and the fast-scanning dynamic light-scattering method. Direct observation of the reaction mixtures is also made with a charge-coupled device video camera. Reproducible and reliable data are obtained in microgravity compared with those in gravity. Increases in the induction times and decreases in the polymerization rates are observed in microgravity compared with those in gravity. One of the main reasons for these observations is the fact that the translational Brownian movement of the reactants and/or product spheres is free from downward translational movement in microgravity. Very weak convection of the reaction suspensions in microgravity is another important factor. Received: 10 November 1998 Accepted in revised form: 12 January 1999  相似文献   

16.
Power AC  Betts AJ  Cassidy JF 《The Analyst》2011,136(13):2794-2801
Silver nanoparticles with a tuneable λ max were produced as colloids by heterogeneous nucleation. The synthesis process is both fast and repeatable, producing stable PVA capped nanoparticles. The colloid's effectiveness in the SERRS system was investigated using Rhodamine 6G, R6G, Crystal Violet, CV, and Malachite Green, MG, as probe molecules. A clear sensing trend was observed, where the Raman signal emitted was significantly enhanced by the addition of silver nanoparticles. A build up of signal intensity is observed until an optimum ratio is achieved, followed by a decline in signal intensity as the concentration of nanoparticles is further increased. The sensing trend appeared to be dependant on the structure of these model molecules with similarly structured compounds exhibiting similar trends. Thus a maximum enhancement with the Ag: analyte molar ratio of ~ 5.56: 1, was seen for CV and MG whereas R6G had a maximum enhancement at the Ag: analyte molar ratio of ~ 2.25: 1.  相似文献   

17.
With the control of G1 poly(amidoamine) (PAMAM), an evolutionary course of stable colloidal silver from discrete nanoparticles to solid spheres through ultraviolet irradiation reduction of silver nitrate solutions was observed by transmission electron microscopy (TEM). The morphologies of the products depend on the Ag+ concentration. A mechanism of globular assembly was put forward to interpret the evolution of the nanostructures. Powder X-ray diffraction (XRD), electron diffraction (ED) patterns, and X-ray photoelectron spectroscopy (XPS) indicate the presence of cubic symmetry silver. XPS and Fourier transform infrared (FT-IR) spectroscopy confirm that dendrimers have participated in the stabilization and control of Ag nanostructures. In the UV-vis spectra, the intense surface plasmons are centered at 425 and 430 nm corresponding to the shapes of dots and solid spheres, respectively. The solid spheres exhibit excellent catalytic efficiency on the reduction of 2,7-dicholoroflurescein (DCF).  相似文献   

18.
Gold nanoparticles were prepared by the reduction of [(C7H15)4N]+ [AuCl4]- with 3,4-ethylenedioxythiophene (EDOT) as reductant in toluene solution. The employed stabilizers include 3,3'-thiodipropionic acid (TDPA), 1-dodecanethiol (DDT), (+/-)-10-camphorsulfonic acid (CSA), and 11-mercaptoundecanoic acid (MUA). The reaction processes were tracked by UV-vis and FT-IR spectroscopy, and the as-prepared gold nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy measurements. When TDPA and MUA, which possess both -S- and -COOH groups, were used as the stabilizer in the preparation, the as-prepared nanoparticles could self-assemble into hollow spheres. While when DDT with a -SH group or CSA with a -SO3H group was used as the protecting agents, only discrete gold nanoparticles were observed. The results show that the groups of both -S- and -COOH in the stabilizer play an important role in forming the hollow nanospheres. It is proposed that the formation mechanism of the hollow spheres is a liposome that formed between -COO- and [(C7H15)4 N]+ could act as a template to induce the self-assembly of the gold nanoparticles into the hollow spheres.  相似文献   

19.
Colloidal silver nanoparticles were synthesized by γ-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40×10?4 and 1.84×10?3 M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a 60Co γ source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV–vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak λmax blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.  相似文献   

20.
Silver nanoparticles were prepared by using polyvinyl pyrrolidone (PVP) as a stabilizer and gamma-irradiation. Transmission electron microscopy (TEM) results showed that both the amount and the molecular weight of PVP in the irradiated solution considerably affect the average size of the silver nanoparticles. The average size of the silver nanoparticles decreases with increasing the amount of PVP in the solution, but increases with increasing its molecular weight. Further, TEM showed that the silver nanoparticles become disassembled into smaller nanoparticles after dilution with distilled water and sonication. Since the processes of dilution and sonication are not expected to result in chemical reactions or to split the silver nanoparticles, we conclude that each silver nanoparticle prepared by [Formula: see text] -irradiation consists of several smaller nanoparticles surrounded by PVP. Thus, based on these observations, we propose a three-step mechanism for the growth of the silver nanoparticles under the conditions considered here. In the first step, the silver ions interact with PVP, then in the second step the silver ions that are exposed to gamma-irradiation are reduced to silver atoms; nearby silver atoms then aggregate at close range. These aggregates are the primary nanoparticles. Finally, these primary nanoparticles coalesce with other nearby primary nanoparticles or interact with PVP to form larger aggregates which are the secondary (final) nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号