首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a combined theoretical and experimental study on the single-molecule interaction of fullerenes with phospholipid membranes. We studied pristine C(60) (1) and two N-substituted fulleropyrrolidines (2 and 3), one of which (3) bore a paramagnetic nitroxide group. Theoretical predictions of fullerene distribution and permeability across lipid bilayers were combined with electron paramagnetic resonance (EPR) experiments in aligned DMPC/DHPC bicelles containing the paramagnetic fulleropyrrolidine 3 or either one of the diamagnetic fullerenes together with spin-labeled lipids. We found that, at low concentrations, fullerenes are present in the bilayer as single molecules. Their preferred location in the membrane is only slightly influenced by the derivatization: all derivatives were confined just below the hydrophilic/hydrophobic interface, because of the key role played by dispersion interactions between the highly polarizable fullerene cage and the hydrocarbon chains, which are especially tight within this region. However, the deviation from spherical shape is sufficient to induce a preferential orientation of 2 and 3 in the membrane. We predict that monomeric fullerenes spontaneously penetrate the bilayer, in agreement with the results of molecular dynamics simulations, but we point out the limits of the currently used permeability model when applied to hydrophobic solutes.  相似文献   

2.
To investigate the implications of the unique properties of fullerenes on their interaction with and passive transport into lipid membranes, atomistic molecular dynamics simulations of a C60 fullerene in a fully hydrated di-myristoyl-phoshatidylcholine lipid membrane have been carried out. In these simulations the free energy and the diffusivity of the fullerene were obtained as a function of its position within the membrane. These properties were utilized to calculate the permeability of fullerenes through the lipid membrane. Simulations reveal that the free energy decreases as the fullerene passes from the aqueous phase, through the head group layer and into the hydrophobic core of the membrane. This decrease in free energy is not due to hydrophobic interactions but rather to stronger van der Waals (dispersion) interactions between the fullerene and the membrane compared to those between the fullerene and (bulk) water. It was found that there is no free energy barrier for transport of a fullerene from the aqueous phase into the lipid core of the membrane. In combination with strong partitioning of the fullerenes into the lipidic core of the membrane, this "barrierless" penetration results in an astonishingly large permeability of fullerenes through the lipid membrane, greater than observed for any other known penetrant. When the strength of the dispersion interactions between the fullerene and its surroundings is reduced in the simulations, thereby emulating a nanometer sized hydrophobic particle, a large free energy barrier for penetration of the head group layer emerges, indicating that the large permeability of fullerenes through lipid membranes is a result of their unique interaction with their surrounding medium.  相似文献   

3.
A hybrid molecular photovoltaic system, based on fullerene C(60) and lutein (a natural photosynthetic carotenoid pigment) that are assembled in a phospholipid/alkanethiol bilayer matrix, is described here. The assembly and photoconversion behaviors of such a system were studied by UV-vis spectroscopy, cyclic voltammetry, impedance spectroscopy, photoelectrochemical action spectroscopy, and photocurrent generation. While lutein itself is inefficient in generating photocurrent, it can strongly modulate photocurrents produced by fullerenes when coassembled in the lipid bilayer matrix presumably via photoinduced electron transfer. Our results thus provide a successful example of combining both synthetic and natural photoactive components in building molecular photovoltaic systems.  相似文献   

4.
In this paper, nonequilibrium molecular dynamics simulations were performed on a single component 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine lipid bilayer in order to investigate the thermal conductivity and its anisotropy. To evaluate the thermal conductivity, we applied a constant heat flux to the lipid bilayer along and across the membrane with ambient water. The contribution of molecular interaction to the heat conduction was also evaluated. Along the bilayer plane, there is little transfer of thermal energy by the interaction between lipid molecules as compared with the interaction between water molecules. Across the bilayer plane, the local thermal conductivity depends on the constituents (i.e., water, head group, and tail group of lipid molecule) that occupy the domain. Although the intramolecular transfer of thermal energy in the tail groups of lipid molecules works efficiently to promote high local thermal conductivity in this region, the highest thermal resistance appears at the center of lipid bilayer where acyl chains of lipid molecules face each other due to a loss of covalent-bond and low number density. The overall thermal conductivities of the lipid bilayer in the directions parallel and perpendicular to the lipid membrane have been compared, and it was found that the thermal conductivity normal to the membrane is higher than that along the membrane, but it is still smaller than that of bulk water.  相似文献   

5.
The self‐aggregation behavior of C60 fullerenes that bear two octadecyl chains (lipid 1 ) as well as the structures and electrochemical properties of cast films of 1 are described. We also examined the self‐aggregation behavior in organic solvents of three previously reported compounds: C60 with three each of hexadecyl (lipid 2 ), tetradecyl (lipid 3 ), or dodecyl (lipid 4 ) chains. The fullerene lipids in alcohols spontaneously formed spherical aggregates, whose diameters are related to the alkyl‐chain lengths, concentrations of the fullerene lipids, and the solvent polarity. The morphologies of the aggregates showed temperature dependence. Cast films of 1 formed multimolecular bilayer structures that undergo a phase transition typical of lipid bilayer membranes. The electrochemistry of cast films of 1 on an electrode in aqueous medium exhibits temperature dependence.  相似文献   

6.
The present article reports the spectroscopic and theoretical investigations on supramolecular interaction between fullerenes (C(60) and C(70)) and a designed bisporphyrin, namely 1, in toluene. Job's method of continuous variation establishes 1:1 stoichiometry of the fullerene/1 complexes. Both absorption spectrophotometric and steady-state fluorescence studies reveal effective and selective interaction between fullerenes and 1 as average binding constants (K) for the C(60)/1 and C(70)/1 complexes are enumerated to be 34,700 and 359,925 dm(3) mol(-1), respectively. Large selectivity ratio in K, i.e., K(C(70))/K(C(60)), indicates that 1 acts as an effective molecular tweezers for C(70) in solution. Time-resolved fluorescence study evokes that the quenching of fluorescence of 1 by fullerenes is of static type in nature. Molecular mechanics calculations in vacuo determine the energies and single projection structures of the supramolecular systems, which provide very good support in favor of strong binding between C(70) and 1.  相似文献   

7.
A new salt, (MDABCO+)(C60.?) ( 1 ; MDABCO+=N‐methyldiazabicyclooctanium cation), was obtained as single crystals. The crystal structure of 1 determined at 250 and 100 K showed 3D close packing of fullerenes with eight fullerene neighbors for each C60.?. These neighbors are located at 10.01–10.11 Å center‐to‐center distances (250 K) and van der Waals interfullerene C???C contacts are formed with four fullerene neighbors arranged in the bc plane. Fullerene ordering observed below 160 K is accompanied by the appearance of one and a half independent C60.? and trebling of the unit cell along the b axis. Fullerenes are packed closer to each other at 100 K. As a result, fullerenes are located in the three‐dimensional packing at 9.91–10.12 Å center‐to‐center distances and 18 short interfullerene C???C contacts are formed for each C60.?. Although they are closed packed, fullerenes are not dimerized down to 1.9 K. Magnetic data indicate strong antiferromagnetic coupling of spins in the 70–300 K range with a Weiss temperature of Θ=?118 K. Magnetic susceptibility shows a round maximum at 46 K. Such behavior can be described well by the Heisenberg model for square two‐dimensional antiferromagnetic coupling of spins with an exchange interaction of J/kB=?25.3 K. This magnetic coupling is one of the strongest observed for C60.? salts.  相似文献   

8.
The effect of substituents with different donor capabilities, which are inserted into a molecule of fullerene C60, on the kinetics and thermodynamics of redox conversions of fullerenes that are immobilized on an electrode, is studied for the first time. To this end, redox conversions that occur with rubbed-on films of fullerene and fulleropyrrolidines are studied using cyclic voltammetry in 0.5 M KCl/H2O and a 0.1 M (C4H9)4NBF4/AN solution in acetonitrile. A hypothesis that the kinetics of redox conversions occurring with films of individual fullerenes is defined largely by changes in the structure of initial films in the process of their cathodic doping is used. The effect of the substituents is explained in the framework of this hypothesis by a transition from a dense crystalline structure of nonsubstituted fullerene C60 to an amorphous structure of substituted fullerenes. It is demonstrated that the formal potentials corresponding to redox conversions of fullerenes in a solid cationic lipid matrix are defined by the energy of interaction of anions, which are products of reduction of fullerenes, with cations of the matrix. As a result of this interaction, the formal potentials of the process of cathodic doping shift to less negative values. It is established that the insertion of a donor substituent and increase in its donor capability amplify the energy of interaction of the fullerene anions with the lipid cations.  相似文献   

9.
The density functional theory (DFT)-based Becke's three parameter hybrid exchange functional and Lee-Yang-Parr correlation functional (B3LYP) calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations have been performed to understand the stability of different anions inside fullerenes of various sizes. As expected, the stability of anion inside the fullerene depends on its size as well as on the size of the fullerene. Results show that the encapsulation of anions in larger fullerenes (smaller fullerene) is energetically favorable (not favorable). The minimum size of the fullerene required to encapsulate F(-) is equal to C(32). It is found from the results that C(60) can accommodate F(-), Cl(-), Br(-), OH(-), and CN(-). The electron density topology analysis using atoms in molecule (AIM) approach vividly delineates the interaction between fullerene and anion. Although F(-)@C(30) is energetically not favorable, the BOMD results reveal that the anion fluctuates around the center of the cage. The anion does not exhibit any tendency to escape from the cage.  相似文献   

10.
A bilayer structure was constructed on gold by Langmuir-Blodgett deposition of a fullerene (C 60)-cyclic peptide-poly(ethylene glycol) (PEG) conjugate and thereafter a pyrene derivative from the air/water interface. The cyclic peptide moiety acts as a scaffold to prevent the fullerenes from self-aggregation and accordingly makes the monolayer homogeneous and stable. In addition to this gold/C 60-cyclic peptide-PEG/pyrene bilayer, a pyrene monolayer, a gold/C 60-PEG conjugate/pyrene bilayer (lacking the peptide scaffold), and a gold/pyrene/C 60-cyclic peptide-PEG bilayer (with the opposite order of layers) were also prepared, and their anodic photocurrent generation were studied in an aqueous solution containing a sacrifice electron donor. The most efficient photocurrent generation was observed in the gold/C 60-cyclic peptide-PEG/pyrene bilayer. It is considered that the C 60 unit acts not only as sensitizer but also as an electron acceptor facilitating the electron transfer from the excited pyrene unit to gold, and that the fullerene layer suppresses quenching of the excited pyrene unit by energy transfer to gold. Furthermore, the cyclic peptide scaffold helps the fullerenes disperse without aggregation in the membrane and seems to protect their redox properties or inhibit self-quenching of their excited state. It is thus concluded that a bilayer structure with desired orientation of functional units is important for efficient photoinduced electron transfer and that a cyclic peptide scaffold is useful to locate hydrophobic functional groups properly in a thin layer.  相似文献   

11.
Herein, a detailed investigation of the adsorption and dynamics of C60 and C70 fullerenes hosted in a self-assembled, two-dimensional, nanoporous porphyrin network on a solid Ag surface is presented. Time-resolved scanning tunneling microscopy (STM) studies of these supramolecular systems at the molecular scale reveal distinct host-guest interactions giving rise to a pronounced dissimilar mobility of the two fullerenes within the porphyrin network. Furthermore, long-range coverage-dependent interactions between the all-carbon guests, which clearly affect their mobility and are likely mediated by a complex mechanism involving the Ag substrate and the flexible porphyrin host network, are observed. At increased fullerene coverage, this unprecedented interplay results in the formation of large fullerene chains and islands. By applying a lattice gas model with nearest-neighbor interactions and by evaluating the fullerene-pair distribution functions, the respective coverage-dependent guest-guest interaction energies are estimated.  相似文献   

12.
Molecular-dynamics simulations of a single C(60) fullerene and pairs of C(60) fullerenes in aqueous solution have been performed for the purpose of obtaining improved understanding of the nature of solvent-induced interactions between C(60) fullerenes in water. Our simulations reveal repulsive solvent-induced interactions between two C(60) fullerenes in aqueous solution in contrast to the associative effects observed for conventional nonpolar solutes. A decomposition of the solvent-induced potential of mean force between fullerenes into entropy and energy (enthalpy) contributions reveals that the water-induced repulsion between fullerenes is energetic in origin, contrasting strongly to entropy-driven association observed for conventional nonpolar solutes. The dominance of energy in the solvent-induced interactions between C(60) fullerenes arises primarily from the high atomic density of the C(60) molecule, resulting in strong C(60)-water van der Waals attraction that is reduced upon association of the fullerenes. The water-induced repulsion is found to decrease with increasing temperature due largely to an increasing contribution from a relatively weak entropy-driven association.  相似文献   

13.
The cycloaddition of readily available nitrile imines to [60]fullerene affording 2-pyrazolino[60]fullerenes is a versatile procedure for the functionalization of fullerenes. In contrast to other functionalization methods these cycloadducts are obtained generally in good yields as single isomers, thus avoiding the formation of undesired stereoisomers. This tutorial review discusses these less known fullerene compounds that display, however, interesting electrochemical and photophysical properties. Owing to their outstanding electron acceptor character, similar to pristine C(60), and their remarkable thermal stability, these cycloadducts are good candidates for incorporation in photovoltaic devices. However, more work is needed in order to design better pyrazolinofullerenes exhibiting improved performances for PV applications.  相似文献   

14.
This study examines the interaction of neutral and charged fullerenes with model silica and polyester surfaces. Molecular dynamics simulations at 298 K indicate that van der Waals forces are sufficiently strong in most cases to cause physisorption of the neutral fullerene particle onto the surfaces. The fullerenes are unable to penetrate the rigid silica surface but are generally able to at least partially infiltrate the flexible polymer surface by opening surface cavities. The introduction of charge to the fullerene generally leads to an increase in both the separation distance and Work of Separation with silica. However, the charged fullerenes generally exhibit significantly closer and stronger interactions with polyester films, with a distinct tendency to absorb into the "bulk" of the polymer. The separation distance and Work of Separation of C60 with each of the surfaces also depend greatly on the sign, magnitude, and localization of the charge on the particle. Cross-linking of the polyester can improve resistance to the neutral fullerene. Functionalization of the polyester surface (F and OH substituents) has been shown to prevent the C60 from approaching as close to the polyester surface. Fluorination leads to improved resistance to positively charged fullerenes, compared to the unmodified polyester. However, hydroxylation generally enables greater adhesion of charged fullerenes to the surface due to H-bonding and electrostatic attraction.  相似文献   

15.
Utilizing a first-principles-based coarse-grained implicit solvent model, we have investigated the self-association of C(60) fullerenes that have been symmetrically modified with six grafted poly(ethylene oxide) (PEO) chains in aqueous solution. Despite the highly symmetric nature of the pair interactions between PEO-grafted fullerenes, their supramolecular assemblies are highly anisotropic and resemble the linear clusters formed in Stockmayer fluids. The dipole-like interaction between these symmetrically modified fullerenes results from the shielding of the C(60) fullerenes by PEO, favoring the addition of more PEO-grafted fullerenes to the linear clusters at the relatively unprotected ends. At low nanoparticle concentrations, self-association is dominated by the formation of stable dimers and trimers resulting from fullerene-fullerene contact and favorable PEO-fullerene interactions. With increasing nanoparticle concentration, larger clusters become increasingly probable. The molecular weight of the PEO tethers can be treated as a temperature-like analogue, with a reduction in average cluster size with increasing chain length due to increased steric repulsion, which is qualitatively similar to effects observed in Stockmayer fluids with increasing temperature. The role of PEO in supramolecular self-organization in PEO-modified C(60) fullerene/water solutions is complex, contributing not only to steric stabilization but also to favorable energetic interactions, nanoparticle shielding, and depletion-driven aggregation.  相似文献   

16.
We present follow-up studies on the formation mechanism of fullerene molecules from random ensembles of C2 molecules using quantum chemical molecular dynamics. Two possible roadmaps are investigated as to how buckminsterfullerene C60 and higher fullerenes could be formed. In a "size-up" scenario, fullerenes of the cage size of C72-C96 were found to form directly from high concentrations of C2 molecules at 2000 K with periodic supply of batches of additional C2's. In a "size-down" approach, smaller fullerenes are sometimes formed by losing carbon fragments in "fall-off" or "pop-out" annealing processes under prolonged heating of giant fullerenes, which were self-assembled at initial stages from C2's with lower concentrations. Both roadmaps are found to provide explanations for the appearance of C60 and larger fullerenes in combustion and carbon arc experiments.  相似文献   

17.
The geometric and electronic structures of metal-substituted fullerene C59Sm and exohedral fullerenes C60Sm are studied using the density-functional theory. The geometric optimization shows that the replacement of a C atom with a Sm in C60 yields a stable substitutionally doped fullerene C59Sm, and among the five possible optimized geometries for C60Sm, the most favorable exohedral sites are above the center of a hexagon and a pentagon ring. The calculations for electronic structures show that the magnetic moment of Sm is preserved for all the stable structures as tiny hybridization takes place between the orbitals of the Sm atom and those of their neighboring carbons. Because of the small energy gaps and the half occupation of the highest occupied molecular orbitals, all the stable C60Sm isomers are inferred to be conductors.  相似文献   

18.
Higher fullerenes (>/=C76) were selectively extracted from a fullerene mixture obtained from a combustion-based industrial production source by cyclic dimers of beta-unsubstituted porphyrin zinc complexes 2C5-2C7 with C5-C7 alkylene spacers as host molecules. Results of single extraction of the fullerene mixture with 2C5-2C7 together with a beta-substituted analogue of 2C6 (1C6) and spectroscopic titration of 2C6 and 1C6 with C60, C70, and C96 indicated that the host selectivity toward higher fullerenes is much dependent on the structure of the porphyrin units and the size of the host cavity. Sequential three-stage extraction of the fullerene mixture with the best-behaved 2C6 resulted in considerable enrichment in very rare fullerenes C102-C110 (<0.1 abs %) up to 82 abs % (C76-C114, 99 abs %) (356 nm) of total fullerenes.  相似文献   

19.
Monoaddition of Grignard reagents, in particular tri(organo)silylmethylmagnesium chlorides, to [60]fullerene took place smoothly in the presence of dimethylformamide to produce (organo)(hydro)[60]fullerenes, C60R(1)H, in good yield (up to 93% isolated yield). The hydrofullerene was then deprotonated to generate the corresponding anion, C60R(-), which was then alkylated to obtain 58pi-electron di(organo)[60]fullerenes, C60R(1)R(2), in good to high yield (up to 93% overall yield). The two-step methodology provides a wide variety of 1,4-di(organo)[60] fullerenes bearing the same or different organic addends on the [60] fullerene core. By changing the addends, one can control the chemical and physical properties of the compounds at the molecular and bulk levels.  相似文献   

20.
We confirmed that most C(60) fullerene units are located in the hydrophobic core of the lipid bilayer membrane in water-soluble lipid membrane incorporated C(60) (LMIC(60)) complexes using differential scanning calorimetry (DSC) and (13)C NMR spectra in the presence of radical labels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号