首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of a protection zone in the diffusive Leslie predator-prey model   总被引:1,自引:0,他引:1  
In this paper, we consider the diffusive Leslie predator-prey model with large intrinsic predator growth rate, and investigate the change of behavior of the model when a simple protection zone Ω0 for the prey is introduced. As in earlier work [Y. Du, J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations 229 (2006) 63-91; Y. Du, X. Liang, A diffusive competition model with a protection zone, J. Differential Equations 244 (2008) 61-86] we show the existence of a critical patch size of the protection zone, determined by the first Dirichlet eigenvalue of the Laplacian over Ω0 and the intrinsic growth rate of the prey, so that there is fundamental change of the dynamical behavior of the model only when Ω0 is above the critical patch size. However, our research here reveals significant difference of the model's behavior from the predator-prey model studied in [Y. Du, J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations 229 (2006) 63-91] with the same kind of protection zone. We show that the asymptotic profile of the population distribution of the Leslie model is governed by a standard boundary blow-up problem, and classical or degenerate logistic equations.  相似文献   

2.
A diffusive predator-prey model with a protection zone   总被引:1,自引:0,他引:1  
In this paper we study the effects of a protection zone Ω0 for the prey on a diffusive predator-prey model with Holling type II response and no-flux boundary condition. We show the existence of a critical patch size described by the principal eigenvalue of the Laplacian operator over Ω0 with homogeneous Dirichlet boundary conditions. If the protection zone is over the critical patch size, i.e., if is less than the prey growth rate, then the dynamics of the model is fundamentally changed from the usual predator-prey dynamics; in such a case, the prey population persists regardless of the growth rate of its predator, and if the predator is strong, then the two populations stabilize at a unique coexistence state. If the protection zone is below the critical patch size, then the dynamics of the model is qualitatively similar to the case without protection zone, but the chances of survival of the prey species increase with the size of the protection zone, as generally expected. Our mathematical approach is based on bifurcation theory, topological degree theory, the comparison principles for elliptic and parabolic equations, and various elliptic estimates.  相似文献   

3.
We investigate the spreading behavior of two invasive species modeled by a Lotka–Volterra diffusive competition system with two free boundaries in a spherically symmetric setting. We show that, for the weak–strong competition case, under suitable assumptions, both species in the system can successfully spread into the available environment, but their spreading speeds are different, and their population masses tend to segregate, with the slower spreading competitor having its population concentrating on an expanding ball, say \(B_t\), and the faster spreading competitor concentrating on a spherical shell outside \(B_t\) that disappears to infinity as time goes to infinity.  相似文献   

4.
A diffusive Lotka–Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka–Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper–lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.  相似文献   

5.
It is an ecological imperative that we understand how changes in landscape heterogeneity affect population dynamics and coexistence among species residing in increasingly fragmented landscapes. Decades of research have shown the dispersal process to have major implications for individual fitness, species’ distributions, interactions with other species, population dynamics, and stability. Although theoretical models have played a crucial role in predicting population level effects of dispersal, these models have largely ignored the conditional dependency of dispersal (e.g., responses to patch boundaries, matrix hostility, competitors, and predators). This work is the first in a series where we explore dynamics of the diffusive Lotka–Volterra (L–V) competition model in such a fragmented landscape. This model has been extensively studied in isolated patches, and to a lesser extent, in patches surrounded by an immediately hostile matrix. However, little attention has been focused on studying the model in a more realistic setting considering organismal behavior at the patch/matrix interface. Here, we provide a mechanistic connection between the model and its biological underpinnings and study its dynamics via exploration of nonexistence, existence, and uniqueness of the model’s steady states. We employ several tools from nonlinear analysis, including sub-supersolutions, certain eigenvalue problems, and a numerical shooting method. In the case of weak, neutral, and strong competition, our results mostly match those of the isolated patch or immediately hostile matrix cases. However, in the case where competition is weak towards one species and strong towards the other, we find existence of a maximum patch size, and thus an intermediate range of patch sizes where coexistence is possible, in a patch surrounded by an intermediate hostile matrix when the weaker competitor has a dispersal advantage. These results support what ecologists have long theorized, i.e., a key mechanism promoting coexistence among competing species is a tradeoff between dispersal and competitive ability.  相似文献   

6.
Complex spatiotemporal dynamics of a diffusive predator-prey system involving additional food supply to predator and intra-specific competition among predator, are investigated. We establish critical conditions of the occurrence of Turing instability, which are necessary and sufficient. Furthermore, we also establish conditions of the occurrence of codimension-2 Turing-Hopf bifurcation and Turing-Turing bifurcation, by exploring interactions of Turing bifurcations and Hopf bifurcation. For Turing-Hopf bifurcation, by analyzing normal form truncated to order 3 which are derived by applying normal form method, it is shown that under proper conditions, diffusive predator-prey system generates interesting spatial, temporal and spatiotemporal patterns, including a pair of spatially inhomogeneous steady states, a spatially homogeneous periodic solution and a pair of spatially inhomogeneous periodic solutions. And numerical simulations are also shown to support theory analysis. Moreover, it is found that proper intra-specific competition among predator helps generate complex spatiotemporal dynamics. And, proper additional food supply to predator helps control the population fluctuations of predator and prey, while large quantity and high quality of additional food supply will lead to the extinction of prey and make predator change the source of food, which finally destroy the ecosystem. These investigations might help understand complex spatiotemporal dynamics of predator-prey system involving additional food supply to predator and intra-specific competition among predator, and help conserve species in an ecosystem via supplying suitable additional food.  相似文献   

7.
In this paper, we derive the existence of forced waves for diffusive competition systems in shifting environments. First, we derive two different classes of forced waves for a 3-species competition system. Then we obtain forced waves for 2-species competition systems with at least one weak competitor. In all cases, the minimal environmental shifting speeds are determined under the equal diffusivities condition.  相似文献   

8.
In this paper, we propose a diffusive predator-prey model with hunting cooperation and nonlocal competition. Under a rather general selection of the kernel function, we first study the stability of the positive equilibrium of the model. Then, we obtain the conditions which Hopf bifurcation and Turing bifurcation occur. Our results show that nonlocal competition plays an important role in determining the dynamics of the model.  相似文献   

9.
In this paper, we investigate the stability and Hopf bifurcation of a diffusive predator-prey system with herd behaviour. The model is described by introducing both time delay and nonlocal prey intraspecific competition. Compared to the model without time delay, or without nonlocal competition, thanks to the together action of time delay and nonlocal competition, we prove that the first critical value of Hopf bifurcation may be homogenous or non-homogeneous. We also show that a double-Hopf bifurcation occurs at the intersection point of the homogenous and non-homogeneous Hopf bifurcation curves. Furthermore, by the computation of normal forms for the system near equilibria, we investigate the stability and direction of Hopf bifurcation. Numerical simulations also show that the spatially homogeneous and non-homogeneous periodic patters.  相似文献   

10.
In this paper, we propose and analyse a mathematical model to study the mathematical aspect of reaction diffusion pattern formation mechanism in a predator-prey system. An attempt is made to provide an analytical explanation for understanding plankton patchiness in a minimal model of aquatic ecosystem consisting of phytoplankton, zooplankton, fish and nutrient. The reaction diffusion model system exhibits spatiotemporal chaos causing plankton patchiness in marine system. Our analytical findings, supported by the results of numerical experiments, suggest that an unstable diffusive system can be made stable by increasing diffusivity constant to a sufficiently large value. It is also observed that the solution of the system converges to its equilibrium faster in the case of two-dimensional diffusion in comparison to the one-dimensional diffusion. The ideas contained in the present paper may provide a better understanding of the pattern formation in marine ecosystem.  相似文献   

11.
基于比率的三种群捕食者-食饵扩散系统的周期解   总被引:15,自引:0,他引:15  
张正球  王志成 《数学学报》2004,47(3):531-540
本文研究一类基于比率的三种群捕食者-食饵扩散系统,利用重合度理论建立了这类系统正周期解的存在性结果。  相似文献   

12.
In this paper, we are concerned with the dynamics of a diffusive predator-prey model that incorporates the functional response concerning hunting cooperation. First, we investigate the stability of the semi-trivial steady state. Then, we investigate the influence of the diffusive rates on the stability of the positive constant steady state. It is shown that there exists diffusion-driven Turing instability when the diffusive rate of the predator is smaller than the critical value, which is dependent on the diffusive rate of the prey, and the semi-trivial steady state and the positive constant steady state are both locally asymptotically stable when the diffusive rate of the predator is larger than the critical value. Finally, the nonexistence of nonconstant steady states is discussed.  相似文献   

13.
We consider a diffusive Lotka–Volterra competition system with stage structure, where the intrinsic growth rates and the carrying capacities of the species are assumed spatially heterogeneous. Here, we also assume each of the competing populations chooses its dispersal strategy as the tendency to have a distribution proportional to a certain positive prescribed function. We give the effects of dispersal strategy, delay, the intrinsic growth rates and the competition parameters on the global dynamics of the delayed reaction diffusion model. Our result shows that competitive exclusion occurs when one of the diffusion strategies is proportional to the carrying capacity, while the other is not; while both populations can coexist if the competition favors the latter species. Finally, we point out that the method is also applied to the global dynamics of other kinds of delayed competition models.  相似文献   

14.
This paper is concerned with the positive stationary problem of a Lotka–Volterra cross-diffusive competition model with a protection zone for the weak competitor. The detailed structure of positive stationary solutions for small birth rates and large cross-diffusion is shown. The structure is quite different from that without cross-diffusion, from which we can see that large cross-diffusion has a beneficial effect for the existence of positive stationary solutions. The effect of the spatial heterogeneity caused by protection zones is also examined and is shown to change the shape of the bifurcation curve. Thus the environmental heterogeneity, together with large cross-diffusion, can produce much more complicated stationary patterns. Finally, the asymptotic behavior of positive stationary solutions for any birth rate as the cross-diffusion coefficient tends to infinity is given, and moreover, the structure of positive solutions of the limiting system is analyzed. The result of asymptotic behavior also reveals different phenomena from that of the homogeneous case without protection zones.  相似文献   

15.
In this paper, we formulate a robust prey-dependent consumption predator-prey model with a delay of digestion and impulsive perturbation on the prey. Using the discrete dynamical system determined by the stroboscopic map, we obtain a ‘predator-eradication’ periodic solution and show that the ‘predator-eradication’ periodic solution is globally attractive when harvesting for the prey is over certain value. Using a new qualitative analysis method for impulsive and delay differential equations, we prove the system is uniformly persistent when harvesting for the prey is under certain value. Further, we show the delay of digestion is a “profitless” time delay. Moreover, we show our theoretical results by numerical simulation. In this paper, the main feature is that we introduce a delay of digestion and impulsive effects into the predator-prey model and exhibit a new mathematical method which is applied to investigate the system which is governed by both impulsive and delay differential equations.  相似文献   

16.
The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.  相似文献   

17.
This paper studies invasion waves in the diffusive competitor–competitor–mutualist model generalizing the two‐species Lotka–Volterra model studied by Weinberger et al. The mutualist may benefit the invading or the resident species producing two different types of invasions. Sufficient conditions for linear determinacy are derived in both cases, and when they hold, explicit formulas for linear spreading speeds of the invasions are obtained by linearizing the model. While in the first case the linear speed is increased by the mutualist, it is unaffected in the second case. Mathematical methods are based on converting the model into a cooperative reaction–diffusion system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Many species are endangered, if we do not act fast, we are going to lose them forever. Establishing protection zone is widely used to protect endangered species. How is the effect of this method? What factors affect the effect of the protection zone? We study this topic by a new mathematical model. We examine the effect of the protection zone and conclude that the protection zone is effective for conservation of population resources and ecological environment, though in some cases the extinction cannot be eliminated. The dangerous region, the parameters domains and the typical bifurcation curves of stability of steady states for the considered system are determined. Our results provide theoretical evidence for the practical management of biological resources.  相似文献   

19.
The modified Leslie-Gower and Holling-type II predator-prey model is generalized in the context of ecoepidemiology, with disease spreading only among the prey species. A new feature is introduced, the intraspecific competition of infected prey. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibrium is shown.  相似文献   

20.
The stability of a diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes is investigated. A threshold property of the local stability is obtained for a boundary steady state, and sufficient conditions of local stability and un-stability for the positive steady state are also obtained. Furthermore, the global asymptotic stability of these two steady states are discussed. Our results reveal the dynamics of this model system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号