首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first half of this paper is concerning with the nonlinear drift-diffusion semiconductor model in d (d?3) dimensional space. The global estimate is achieved on the evolution of support of solution and the finite speed of propagation. The proof is based on the estimate of the weighted norm with special designed weight functions. In the second half, we prove the quasineutral limit locally for 1-dimensional standard drift-diffusion model with discontinuous, sign-changing doping profile.  相似文献   

2.
This paper studies the uniqueness and the asymptotic stability of a pyramidal traveling front in the three-dimensional whole space. For a given admissible pyramid we prove that a pyramidal traveling front is uniquely determined and that it is asymptotically stable under the condition that given perturbations decay at infinity. For this purpose we characterize the pyramidal traveling front as a combination of planar fronts on the lateral surfaces. Moreover we characterize the pyramidal traveling front in another way, that is, we write it as a combination of two-dimensional V-form waves on the edges. This characterization also uniquely determines a pyramidal traveling front.  相似文献   

3.
We consider a hyperbolic version of Eells-Sampson's equation: . This equation is semilinear with respect to space derivative and time derivative. Letu (x) be the solution with initial data u(0) and (0), and putv (t,x)=u (t,x). We show that when the resistance ,V (t,x) converges to a solution of the original parabolic Eells-Sampson's equation: . Note thatv t(0)= (0) diverges when . We show that this phenomena occurs in more general situations.This article was processed by the author using the Springer-Verlag Pjourlg macro package.  相似文献   

4.
This paper is devoted to the derivation of (non-linear) drift-diffusion equations from the semiconductor Boltzmann equation. Collisions are taken into account through the non-linear Pauli operator, but we do not assume relation on the cross section such as the so-called detailed balance principle. In turn, equilibrium states are implicitly defined. This article follows and completes the contribution of Mellet (Monatsh. Math. 134 (4) (2002) 305-329) where the electric field is given and does not depend on time. Here, we treat the self-consistent problem, the electric potential satisfying the Poisson equation. By means of a Hilbert expansion, we shall formally derive the asymptotic model in the general case. We shall then rigorously prove the convergence in the one-dimensional case by using a modified Hilbert expansion.  相似文献   

5.
We will show that if u is the solution of the equation , in is an even function on and is monotone decreasing in on , , where is a monotone increasing function satisfying with being given by and , then the rescaled function , will converge uniformly on every compact subset of to as where . Received: 25 May 2000 / Revised version: 26 October 2001 / Published online: 28 February 2002  相似文献   

6.
We study the Cauchy problem for the nonlinear heat equation ut-?u=|u|p-1u in RN. The initial data is of the form u0=λ?, where ?C0(RN) is fixed and λ>0. We first take 1<p<pf, where pf is the Fujita critical exponent, and ?C0(RN)∩L1(RN) with nonzero mean. We show that u(t) blows up for λ small, extending the H. Fujita blowup result for sign-changing solutions. Next, we consider 1<p<ps, where ps is the Sobolev critical exponent, and ?(x) decaying as |x|-σ at infinity, where p<1+2/σ. We also prove that u(t) blows up when λ is small, extending a result of T. Lee and W. Ni. For both cases, the solution enjoys some stable blowup properties. For example, there is single point blowup even if ? is not radial.  相似文献   

7.
Consider the parabolic equation
(E)  相似文献   

8.
We consider the nonlinear heat equation with nonlocal reaction term in space , in smoothly bounded domains. We prove the existence of a universal bound for all nonnegative global solutions of this equation. Moreover, in contrast with similar recent results for equations with local reaction terms, this is shown to hold for all p>1. As an interesting by-product of our proof, we derive for this equation a smoothing effect under weaker assumptions than for corresponding problem with local reaction.  相似文献   

9.
We study the large–time behavior of the second moment (energy) for the flow of a gas in a N-dimensional porous medium with initial density v0(x) 0. The density v(x, t) satisfies the nonlinear degenerate parabolic equation vt = vm where m > 1 is a physical constant. Assuming that for some > 0, we prove that E(t) behaves asymptotically, as t , like the energy EB(t) of the Barenblatt-Pattle solution B(|x|, t). This is shown by proving that E(t)/EB(t) converges to 1 at the (optimal) rate t–2/(N(m-1)+2). A simple corollary of this result is a central limit theorem for the scaled solution E(t)N/2v(E(t)1/2x, t).  相似文献   

10.
We extend to the singular case the results of [E. Henriques, J.M. Urbano, Intrinsic scaling for PDEs with an exponential nonlinearity, Indiana Univ. Math. J. 55 (5) (2006) 1701-1721] concerning the regularity of weak solutions of the porous medium equation with variable exponent. The method of intrinsic scaling is used to show that local weak solutions are locally continuous.  相似文献   

11.
In this paper the limit of vanishing Debye length in a bipolar drift-diffusion model for semiconductors with physical contact-insulating boundary conditions is studied in one-dimensional case. The quasi-neutral limit (zero-Debye-length limit) is proved by using the asymptotic expansion methods of singular perturbation theory and the classical energy methods. Our results imply that one kind of the new and interesting phenomena in semiconductor physics occurs.  相似文献   

12.
We consider the Allen-Cahn equation in Rn (with n?2) and study how a planar front behaves when arbitrarily large (but bounded) perturbation is given near the front region. We first show that the behavior of the disturbed front can be approximated by that of the mean curvature flow with a drift term for all large time up to t=+∞. Using this observation, we then show that the planar front is asymptotically stable in L(Rn) under spatially ergodic perturbations, which include quasi-periodic and almost periodic ones as special cases. As a by-product of our analysis, we present a result of a rather general nature, which states that, for a large class of evolution equations, the unique ergodicity of the initial data is inherited by the solution at any later time.  相似文献   

13.
In this paper the vanishing Debye length limit of the bipolar time-dependent drift-diffusion-Poisson equations modelling insulated semiconductor devices with p-n junctions (i.e., with a fixed bipolar background charge) is studied. For sign-changing and smooth doping profile with ‘good’ boundary conditions the quasineutral limit (zero-Debye-length limit) is performed rigorously by using the multiple scaling asymptotic expansions of a singular perturbation analysis and the carefully performed classical energy methods. The key point in the proof is to introduce a ‘density’ transform and two λ-weighted Liapunov-type functionals first, and then to establish the entropy production integration inequality, which yields the uniform estimate with respect to the scaled Debye length. The basic point of the idea involved here is to control strong nonlinear oscillation by the interaction between the entropy and the entropy dissipation.  相似文献   

14.
This paper is concerned with the stability/instability of a class of positive spiky steady states for a quasi-linear cross-diffusion system describing two-species competition. By detailed spectral analysis, it is proved that the spiky steady states for the related shadow system are linearly unstable and the spiky steady states for the original cross-diffusion system are non-linearly unstable.  相似文献   

15.
This paper is concerned with an inhomogeneous nonlocal dispersal equation. We study the limit of the re-scaled problem of this nonlocal operator and prove that the solutions of the re-scaled equation converge to a solution of the Fokker-Planck equation uniformly. We then analyze the nonlocal dispersal equation of an inhomogeneous diffusion kernel and find that the heterogeneity in the classical diffusion term coincides with the inhomogeneous kernel when the scaling parameter goes to zero.  相似文献   

16.
In this paper, we consider the positive solution of the Cauchy problem for the equation
  相似文献   

17.
In this paper, we investigate the spatial dynamics of a nonlocal and time-delayed reaction-diffusion system, which is motivated by an age-structured population model with distributed maturation delay. The spreading speed c*, the existence of traveling waves with the wave speed c?c*, and the nonexistence of traveling waves with c<c* are obtained. It turns out that the spreading speed coincides with the minimal wave speed for monotone traveling waves.  相似文献   

18.
This paper is concerned with the existence, asymptotic stability and uniqueness of traveling wavefronts in a nonlocal diffusion equation with delay. By constructing proper upper and lower solutions, the existence and asymptotic behavior of traveling wavefronts are established. Then the asymptotic stability with phase shift as well as the uniqueness up to translation of traveling wavefronts are proved by applying the idea of squeezing technique.  相似文献   

19.
We prove the existence of a unique solution of the following Neumann problem , u > 0, in (a, b) × (0, T), u(x, 0) = u 0(x) ≥ 0 in (a, b), and , where if m < 0, if m = 0, and m≤ 0, , and the case −1 < m ≤ 0, , for some constant p > 1 − m. We also obtain a similar result in higher dimensions. As a corollary we will give a new proof of a result of A. Rodriguez and J.L. Vazquez on the existence of infinitely many finite mass solutions of the above equation in for any −1 < m ≤ 0. We also obtain the exact decay rate of the solution at infinity.  相似文献   

20.
In this paper we study the numerical approximation for the heat equation with a singular absorption. We prove that the numerical quenching rate coincides with the continuous one. We also see that the quenching time and the quenching set converge to the continuous one. In fact, under some restriction on the initial data, the numerical quenching coincides with the continuous one. Finally, we give some numerical results to illustrate our analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号