首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of travelling wave ion mobility mass spectrometry (TWIM-MS) to resolve cationic meta/para and cis/trans isomers of mono-, di-, tri- and tetra-ruthenated supramolecular porphyrins was investigated. All meta isomers were found to be more compact than the para isomers and therefore mixtures of all isomeric pairs could be properly resolved with baseline or close to baseline peak-to-peak resolution (R(p-p)). Di-substituted cis/trans isomers were found, however, to present very similar drift times and could not be resolved. N(2) and CO(2) were tested as the drift gas, and similar α but considerably better values of R(p) and R(p-p) were always observed for CO(2).  相似文献   

2.
Travelling wave ion mobility mass spectrometry (TWIM‐MS) with post‐TWIM and pre‐TWIM collision‐induced dissociation (CID) experiments were used to form, separate and characterize protomers sampled directly from solutions or generated in the gas phase via CID. When in solution equilibria, these species were transferred to the gas phase via electrospray ionization, and then separated by TWIM‐MS. CID performed after TWIM separation (post‐TWIM) allowed the characterization of both protomers via structurally diagnostic fragments. Protonated aniline (1) sampled from solution was found to be constituted of a ca. 5:1 mixture of two gaseous protomers, that is, the N‐protonated (1a) and ring protonated (1b) molecules, respectively. When dissociated, 1a nearly exclusively loses NH3, whereas 1b displays a much diverse set of fragments. When formed via CID, varying populations of 1a and 1b were detected. Two co‐existing protomers of two isomeric porphyrins were also separated and characterized via post‐TWIM CID. A deprotonated porphyrin sampled from a basic methanolic solution was found to be constituted predominantly of the protomer arising from deprotonation at the carboxyl group, which dissociates promptly by CO2 loss, but a CID‐resistant protomer arising from deprotonation at a porphyrinic ring NH was also detected and characterized. The doubly deprotonated porphyrin was found to be constituted predominantly of a single protomer arising from deprotonation of two carboxyl groups. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
6.
Electrospray ionization performs best with volatile buffers. However, generally the best separation performance for capillary electrophoresis (CE) is achieved with non‐volatile buffers. Hyphenation of CE with mass spectrometry (MS) utilizing atmospheric pressure photoionization (APPI) enables use of a wider range of separation buffers without compromising detection sensitivity. As APPI is considered to be mass flow sensitive, the use of a larger inner diameter separation capillary (75 µm) allows larger volumes to be injected, without decreased separation performance, thus providing improved sensitivity (approx. a factor of 10), compared to the use of a 25 µm capillary. However, nebulizing gas flow and position of capillary tip in the sprayer have to be carefully optimized to prevent excessive band broadening. Further improvement in sensitivity (approx. a factor of 2) was obtained by decreasing the distance between the sprayer and ionization region, indicating that a specially designed CE/APPI‐MS interface for low flow rates will be favourable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Ion mobility spectrometry (IMS) separates ions while they travel through a buffer gas under the influence of an electrical field. The separation is affected by mass and charge but most particularly by shape (collision cross section). When coupled to MS, IMS-MS offers therefore a powerful tool for structural elucidation and isomer separation. Systematic studies aimed to compare and quantitate the effects of structural changes on drift time such as length and ramification of carbon chain, unsaturation, geometrical isomerism (cis/trans isomers for instance), cyclization and ring size are, however, scarce. Herein we used traveling wave ion mobility mass spectrometry (TWIM-MS) to systematically evaluate the relationship between structure and drift time. For that, a series of deprotonated carboxylic acids were used as model ions with a carboxylate “charge tag” for gas phase MS manipulation. Carboxylic acids showed a near linear correlation between the increase of carbon number and the increase of collision cross section (CCS). The number of double bonds changes slightly the CCS of unsaturated acids. No differences in drift time and no significant differences in CCS of cis- and trans-double bond of oleic and elaidic acids were observed. Cyclization considerably reduces the CCS. In cyclic carboxylic acids, the increase of double bonds and aromatization significantly reduces the CCS and the drift times. The use of a more polarizable drift gas, CO2, improved in some cases the separation, as for biomarker isomers of steranoic acids. The β-isomer (cis-decaline) has smaller CCS and therefore displayed lower drift time compared to the α-isomer (trans-decaline). Structural changes revealed by calculations were correlated with trends in drift times.  相似文献   

8.
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.  相似文献   

9.
CZE is an appropriate technique for separating charged species, but lacks selectivity for neutral compounds. Alternative approaches such as microemulsion electrokinetic chromatography (MEEKC) have been developed to broaden its range of applications. Hyphenation of MEEKC with MS is an attractive perspective since it can enhance sensitivity and selectivity. The on-line coupling of MEEKC with MS, however, is not straightforward due to the low compatibility of non-volatile surfactant additives (e.g. SDS) and the commonly used API source, namely ESI. In order to hyphenate MEEKC with MS detection, the atmospheric pressure photoionization (APPI) source was investigated. Possibilities offered by the coupling of MEEKC with APPI-MS were highlighted for the complex separation of ionized and neutral compounds in both the positive and negative modes. MEEKC-APPI-MS performance, in terms of selectivity, efficiency and sensitivity was compared to CZE-ESI-MS and MEEKC-ESI-MS for the screening of doping substances (beta-blockers, central stimulants, diuretics, etc). Relevant selectivity and detectability, particularly for neutral, structurally related and isobaric compounds was demonstrated with the MEEKC-APPI-MS approach opening new avenues for CE-MS, in addition to the well-established CZE-ESI-MS technique.  相似文献   

10.
The use of ion mobility separation to determine the collision cross-section of a gas-phase ion can provide valuable structural information. The introduction of travelling-wave ion mobility within a quadrupole/time-of-flight mass spectrometer has afforded routine collision cross-section measurements to be performed on a range of ionic species differing in gas-phase size/structure and molecular weight at physiologically relevant concentrations. Herein we discuss the technical advances in the second-generation travelling-wave ion mobility separator, which result in up to a four-fold increase in mobility resolution. This improvement is demonstrated using two reverse peptides (mw 490 Da), small ruthenium-containing anticancer drugs (mw 427 Da), a cisplatin-modified protein (mw 8776 Da) and the noncovalent tetradecameric chaperone complex GroEL (mw 802 kDa). What is also shown are that the collision cross-sections determined using the second-generation mobility separator correlate well with the previous generation and theoretically derived values.  相似文献   

11.
Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10 eV and 10.6 eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands.  相似文献   

12.
The potential of atmospheric pressure photoionization was investigated for the structural analysis of phosphatidylcholine lipids (PCs). [M+H]+ ions of high abundance were obtained, along with several fragment ions. Three of these dissociation products corresponded to quite unusual fragmentation pathways but allowed the determination of both the nature and the position on the glycerol backbone (sn-1 or sn-2) of the fatty acyl chains. The loss of a methyl group from the choline head was also observed. These results suggest a complex ionization mechanism in APPI. However, this method proved to be very powerful for the rapid structural analysis of PC species without using MS/MS experiments.  相似文献   

13.
The coupling of planar chromatography with direct analysis in real time time-of-flight mass spectrometry (DART-TOF-MS) was shown for the first time. Cutting the plate within a track led to substance zones positioned on the plate edge which were directly introduced into the DART gas stream. Mass signals were obtained instantaneously within seconds. Detectability was shown in the very low ng-range per zone on the example of isopropylthioxanthone. The coupling was perfectly suited for identification and qualitative purposes, but it was initially critical for quantification of results. Analytical response (R2 0.8202) and repeatability were strongly dependent from proper manual positioning of the HPTLC plate into the electronic or vibronic excited-state gas stream of the ion source. This drawback was overcome by using stable isotope-labeled standards shown on the example of caffeine. This way, analytical response (R2 0.9892) and repeatability (RSD < +/- 5.4%, n=6) were improved to a high extent. Spatial resolution by an in-house-built plate holder system was shown to be better than 3 mm. The decay of the signal was observed. The efficacy of this new coupling was compared to a plunger-based extraction device for HPTLC/electrospray ionisation-MS. The latter device showed detectability down to the pg-range, e.g. the limit of quantification for isopropylthioxanthone was found to be 100 pg. Repeatability was comparable (RSD +/- 6.7%), however, without the need of internal standard correction. Analytical response was slightly better and showed a determination coefficient R2 of 0.9983. Similar data were obtained for caffeine as well. Spatial resolution was 2 mm or 4 mm depending on the plunger head used. The comparison showed that HPTLC/DART-TOF-MS is a useful coupling method regarding qualitative aspects and it has the potential to cope also with the difficulties of quantification if isotope-labeled standards were used or if a plate holder system is employed as initially shown.  相似文献   

14.
Liquid chromatography/atmospheric pressure photoionization tandem mass spectrometry (LC/APPI-MS/MS) was investigated as an instrumental method for the analysis of the halogenated norbornene flame retardants, Mirex, Dechloranes 602, 603, 604, and Dechlorane Plus (DP). The LC separation was optimized by screening a variety of stationary and mobile phases, resulting in a short LC separation time of 5 min. Different atmospheric pressure ionization approaches were examined including electrospray ionization, atmospheric pressure chemical ionization, and APPI, each with and without post-column addition. APPI without post-column addition was chosen for providing the best ionization response. The optimized LC/APPI-MS/MS approach resulted in instrument detection limits ranging between 25 and 50 pg. Good linearity was also achieved (up to 25.0 ng/μL; R >0.999). The method was applied to extracts of environmental samples including surface water, fish and sediments for screening purposes, and the results agreed well with those obtained by gas chromatography/mass spectrometry.  相似文献   

15.
In this study the influence of aromatic dopant benzene on the sensitivity of GC-APPI-DMS to gasoline related aromatic compounds was investigated. This influence was investigated on example of four gasolin related fingerprints (toluene, ethylbenzene, o-xylene, and 1,2,4-trimethylbenzene), which were found in high relative abundance in the water-soluble gasoline fraction. The analysis of calibration curves slopes demonstrats that the GC-APPI-DMS sensitivity to gasoline fingerprints can be improved by up to seven times when benzene concentration in nitrogen carrier gas is less than 10 ppmv/v. The estimated detection limits (S/N?=?3) for the analyzed in this study compounds were found to be within the range of 33–105 μg L?1 at benzene concentration in the carrier gas of 2.27 ppmv/v (10 μL injection volume). These limits of detection may be reduced (at the cost of lower resolution) using the larger injection volumes. For example, increase of injection volume to 100 μL at benzene concentration in the carrier gas of 2.27 ppmv/v leads to reduction of LOD values for toluene, ethylbenzene, and o-xylene to 11.1, 13.3, and 5.3 μg L?1, respectively.  相似文献   

16.
In this work, the use of MALDI traveling wave ion mobility spectrometry‐mass spectrometry (MALDI‐TWIMS‐MS) for stereoselective structural analysis of direct cleavage and identification of 2‐substituted piperidines obtained through solid‐phase asymmetric synthesis by using heterogeneous 8‐phenylmenthyl‐based chiral auxiliary resins. A strategy for gas‐phase chiral and structural characterization of small molecular weight molecules by using MALDI‐IMS‐MS technique is discussed. Because both MALDI and IMS do not directly offer chiral resolution, an easy methodology by adding a chiral phase is described to carry out in situ online ion/molecule complexation with different chiral analytes inside the mass spectrometer. Piperidine enantiomers were resolved, and separation obtained shows dependence of surface areas. To corroborate this assumption and elucidate the separation mechanism to accomplish an analytical technique by which fast determination of the chirality of molecules may be determined for a wide range organic compound applications, it was performed DFT calculations to determine the cross‐sectional areas of proton‐bound dimer complexes. Drift times are affected by cross‐sectional areas, correlating bigger times with bigger molecular volumes during the ion mobility experiments of proton‐bound dimer complexes.  相似文献   

17.
18.
We present the results of studying the effects of temperature and humidity of the reaction medium and the intensity of ultraviolet radiation on the atmospheric pressure chemical ionization of Penthrite. The peculiarities of the ion mobility spectra of this compound obtained by ion mobility spectrometry-tandem mass spectrometry are analyzed.  相似文献   

19.
20.
In a digital ion trap (DIT), the quadrupole trapping and excitation waveforms are generated by the rapid switching between discrete d.c. voltage levels. As the timing of the switch can be controlled precisely by digital circuitry, the approach provides an opportunity to generate mass spectra by means of a frequency scan in contrast to the conventional voltage scan, thus providing a wider mass range of analysis. An instrument has been constructed which employs a 'non-stretched' ion trap and the field fault around the aperture of the end-cap electrode can be corrected electronically using a field-adjusting electrode. The ion trap was coupled with electrospray ionization (ESI) and atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) sources to demonstrate the capability of the digital method. AP-MALDI mass spectra of singly charged ions with mass-to-charge ratios upto 17 000 Th were generated using a trapping voltage of only 1000 V. Forward and reverse mass scans at resolutions up to 19 000 and precursor ion isolation at resolutions up to 3500 with subsequent tandem mass spectrometric analysis were demonstrated. The method of generating the digital waveforms and period scan is described. Discussion of the issues of mass range, scan speed, ion trapping efficiency and collision-induced dissociation efficiency are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号