首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time‐of‐flight mass spectrometry (LDI TOFMS). Gold clusters Aum+ (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For Pn+ (n = 2 to ~111) clusters, the intensities of odd‐numbered phosphorus clusters are much higher than those for even‐numbered phosphorus clusters. During ablation of P‐nanogold mixtures, clusters Aum+ (m = 1‐12), Pn+ (n = 2‐7, 9, 11, 13–33, 35–95 (odd numbers)), AuPn+ (n = 1, 2–88 (even numbers)), Au2Pn+ (n = 1‐7, 14–16, 21–51 (odd numbers)), Au3Pn+ (n = 1‐6, 8, 9, 14), Au4Pn+ (n = 1‐9, 14–16), Au5Pn+ (n = 1‐6, 14, 16), Au6Pn+ (n = 1‐6), Au7Pn+ (n = 1‐7), Au8Pn+ (n = 1‐6, 8), Au9Pn+ (n = 1‐10), Au10Pn+ (n = 1‐8, 15), Au11Pn+ (n = 1‐6), and Au12Pn+ (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Aum (m = 1–5), Pn (n = 2, 3, 5–11, 13–19, 21–35, 39, 41, 47, 49, 55 (odd numbers)), AuPn (n = 4–6, 8–26, 30–36 (even numbers), 48), Au2Pn (n = 2–5, 8, 11, 13, 15, 17), Au3Pn (n = 6–11, 32), Au4Pn (n = 1, 2, 4, 6, 10), Au6P5, and Au7P8 clusters were observed. In both modes, phosphorus‐rich AumPn clusters prevailed. The first experimental evidence for formation of AuP60 and gold‐covered phosphorus Au12Pn (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of new Au‐P materials with specific properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
6.
7.
8.
Thin films of AgSbS2 are important for phase‐change memory applications. This solid is deposited by various techniques, such as metal organic chemical vapour deposition or laser ablation deposition, and the structure of AgSbS2(s), as either amorphous or crystalline, is already well characterized. The pulsed laser ablation deposition (PLD) of solid AgSbS2 is also used as a manufacturing process. However, the processes in plasma have not been well studied. We have studied the laser ablation of synthesized AgSbS2(s) using a nitrogen laser of 337 nm and the clusters formed in the laser plume were identified. The ablation leads to the formation of various single charged ternary AgpSbqSr clusters. Negatively charged AgSbS, AgSb2S, AgSb2S, AgSb2S and positively charged ternary AgSbS+, AgSb2S+, AgSb2S, AgSb2S clusters were identified. The formation of several singly charged Ag+, Ag, Ag, Sb, Sb, S ions and binary AgpSr clusters such as AgSb, Ag3S?, SbS (r = 1–5), Sb2S?, Sb2S, Sb3S (r = 1–4) and AgS, SbS+, SbS, Sb2S+, Sb2S, Sb3S (r = 1–4), AgSb was also observed. The stoichiometry of the clusters was determined via isotopic envelope analysis and computer modeling. The relation of the composition of the clusters to the crystal structure of AgSbS2 is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Species identification of fragmentary bone, such as in rendered meat and bone meal or from archaeological sites, is often difficult in the absence of clear morphological markers. Here we present a robust method of analysing genus‐specific collagen peptides by mass spectrometry simply by using solid‐phase extraction (a C18 ZipTip®) for peptide purification, rather than liquid chromatography/mass spectrometry (LC/MS). Analysis of the collagen from 32 different mammal species identified a total of 92 peptide markers that could be used for species identification, for example, in processed food and animal feed. A set of ancient (>100 ka@10°C) bone samples was also analysed to show that the proposed method has applications to archaeological bone identification. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Analysis of grapevine phytoalexins at the surface of Vitis vinifera leaves has been achieved by laser desorption/ionisation time‐of‐flight mass spectrometry (LDI‐ToFMS) without matrix deposition. This simple and rapid sampling method was successfully applied to map small organic compounds at the surface of grapevine leaves. It was also demonstrated that the laser wavelength is a highly critical parameter. Both 266 and 337 nm laser wavelengths were used but the 266 nm wavelength gave increased spatial resolution and better sensitivity for the detection of the targeted metabolites (resveratrol and linked stilbene compounds). Mass spectrometry imaging of grapevine Cabernet Sauvignon leaves revealed specific locations with respect to Plasmopara viticola pathogen infection or light illumination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper focuses on development of time‐of‐flight (TOF) mass spectrometry in response to the invention of matrix‐assisted laser desorption/ionization (MALDI). Before this breakthrough ionization technique for nonvolatile molecules, TOF was generally considered as a useful tool for exotic studies of ion properties but was not widely applied to analytical problems. Improved TOF instruments and software that allow the full potential power of MALDI to be applied to difficult biological applications are described. A theoretical approach to the design and optimization of MALDI‐TOF instruments for particular applications is presented. Experimental data are provided that are in excellent agreement with theoretical predictions of resolving power and mass accuracy. Data on sensitivity and dynamic range using kilohertz laser rates are also summarized. These results indicate that combinations of high‐performance MALDI‐TOF and TOF‐TOF with off‐line high‐capacity separations may ultimately provide throughput and dynamic range several orders of magnitude greater than those currently available with electrospray LC‐MS and MS‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Phosphorus clusters Pn (n = 1–89) are easily formed from red phosphorus by laser desorption ionization (LDI) and they cover a range of up to approx. m/z 3000 in both positive and negative ion mode. The clusters are singly charged and the spectra are simple because phosphorus is monoisotopic. The mass spectra can be measured with an acceptable resolution and intensity. The use of positively charged Pn clusters for calibration in mass spectrometry was examined and it was demonstrated that in external calibration a standard deviation of ±0.04 m/z units can be achieved even when using a common commercial matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) instrument. When used as internal standards the Pn clusters react with some analytes – C60 and C70 fullerenes and cucurbituril[8], for example. It was also found that red phosphorus is a suitable MALDI matrix for peptides and proteins, illustrated by the examples of a Calmix mixture of bradykinin, angiotensin, renin, adrenocorticotropic hormone ACTH fragment 18‐359 and insulin, and of insulin alone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Hepcidin is known to be a key systemic iron‐regulatory hormone which has been demonstrated to be associated with a number of iron disorders. Hepcidin concentrations are increased in inflammation and suppressed in hemochromatosis. In view of the role of hepcidin in disease, its potential as a diagnostic tool in a clinical setting is evident. This study describes the development of a matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) assay for the quantitative determination of hepcidin concentrations in clinical samples. A stable isotope labeled hepcidin was prepared as an internal standard and a standard quantity was added to urine samples. Extraction was performed with weak cation‐exchange magnetic nanoparticles. The basic peptides were eluted from the magnetic nanoparticles using a matrix solution directly onto a target plate and analyzed by MALDI‐TOF MS to determine the concentration of hepcidin. The assay was validated in charcoal stripped urine, and good recovery (70–80%) was obtained, as were limit of quantitation data (5 nmol/L), accuracy (RE <10%), precision (CV <21%), within ‐day repeatability (CV <13%) and between‐day repeatability (CV <21%). Urine hepcidin levels were 10 nmol/mmol creatinine in healthy controls, with reduced levels in hereditary hemochromatosis (P < 0.000005) and elevated levels in inflammation (P < 0.0007). In summary a validated method has been developed for the determination of hepcidin concentrations in clinical samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
19.
Concerns with water quality have increased in recent years, in part due to the more frequent contamination of water by pathogens like E. coli and L. pneumophila. Current methods for the typing of bacteria in water samples are based on culture of samples on specific media. These techniques are time‐consuming, subject to the impact of interferents and do not totally meet all the requirements of prevention. There is a need for accurate and rapid identification of these microorganisms. This report deals with the detection of bacteria, more precisely of Legionella spp., and the development of an analytical strategy for a rapid and unambiguous identification of these pathogens in water from diverse origins. Therefore, a protein mass mapping using matrix‐assisted laser desorption/ionisation mass spectrometry (MALDI MS) of whole bacteria combined with a home‐made database of bacteria spectra is applied. A large variety of different bacteria and microorganisms is used to approach the actual composition of samples with numerous interferents. The objective is to propose a universal method for sampling preparation before MALDI MS analysis and optimised spectrometric conditions for reproducible intense peaks. Several experimental factors known to influence signal quality such as time and media of culture have been studied. The proposed method gives promising results for a sure differentiation of Legionella species and subspecies and a rapid identification of bacteria which are the most dangerous or difficult to eradicate. This method is easy to perform with an excellent reproducibility. The analytical protocol and the corresponding database were validated on samples from different origins (cooling tower, plumbing hot water). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号