首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Rationale

The isotope delta is calculated from the isotope ratio of a sample and the absolute isotope ratio of the zero reference point defining each stable isotope international scale (Rstd). Therefore, Rstd requires accurate determination. However, the literature contains a large number of Rstd values, and selection of different Rstd may lead to inconsistency in reporting and recalculating stable isotope results.

Methods

We reviewed Rstd used in the proprietary software provided by the manufacturers of stable isotope instruments commonly employed for analyses of stable HCNOS compositions. We compared the Rstd values and assessed the potential implications of using different Rstd and the normalization versus tank working gas standard for consistency in reporting stable isotope results.

Results

Different Rstd values are used by different manufacturers of stable isotope analytical instruments. For R(2H/1H)VSMOW two different but very similar values are used, 0.00015575 and 0.00015576; for R(13C/12C)VPDB three different values are used, 0.0111802, 0.0112372 and 0.01118028; and for R(15N/14N)Air-N2 two values, 0.0036782 and 0.0036765, are used. All manufacturers are using the same value for R(18O/16O)VSMOW, 0.00200520, but three different values for R(18O/16O)VPDB, 0.002067200, 0.00208835 and 0.002088349. For R(34S/32S)VCDT four different Rstd are used, 0.0441509, 0.0441626, 0.044162589 and 0.0441520597.

Conclusions

The use of different Rstd values may lead to differences in the isotope delta values obtained if the normalization versus working standard gas is applied. For the range of Rstd used in proprietary software, the potential differences are lowest for oxygen (< 0.002 ‰) and nitrogen (< 0.001 ‰), and highest for carbon (0.107 to 0.112 ‰) and sulfur (0.023 ‰). Evaluation of the existing Rstd values and recommendations for the best estimates are highly desirable to ensure worldwide consistency in stable isotope data reporting.
  相似文献   

2.
The electron spin selectivity of radical reactions is accompanied by nuclear spin selectivity, i.e., sorting of the isotopic nuclei relative to their magnetic moment. This property of spin-selective reactions produces separation of magnetic and nonmagnetic isotopes known as the magnetic isotope effect. The chemical physics of this phenomenon is examined along with the conditions and magnitude of its manifestation as well as the prospects for its use in theoretical and experimental chemistry.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 31, No. 3, pp. 144–152, May–June, 1995.  相似文献   

3.
The isotope dilution method, which is based on the isolation of a constant substoichiometric amount, can be completed by a group of radiometric techniques in which this amount is a function of the concentration to be determined. It is convenient then to plot the experimental data in such a way that a straight line is obtained. The methods which can be used in the application of this principle are discussed, mathematically treated and compared to the original procedure of R?ZI?KA and STARÝ. Expressions are derived for the relative statistical error and the limit of detection.  相似文献   

4.
The question as to what constitutes a fully calibrated isotope amount ratio measurement still remains a topic of active research. For years, the definitive calibration approach has been by means of synthetic mixtures of highly enriched isotopes with known chemical purity to give gravimetrically defined ratios. This article outlines the core concepts and assumptions of this method and illustrates the recent developments in the practical metrology of isotope amount ratio measurements.  相似文献   

5.
The kinetic parameters of the tritium exchange between*H2O(*D2O) and (CH3)2PH in the gas phase and between*H2O(*D2O) and (C6H5)2PH in liquid were measured. Both reactions appeared to be heterogeneous ones. The*HH/*DD kinetic isotope effects were estimated and compared with the results of exchange between methanol and phosphines. The differences in isotope effects are explained by the change of the symmetry of the four center cyclic transition complex resulting from the various type of solvation of this complex.  相似文献   

6.
Carbon isotope analysis by bulk elemental analysis coupled with isotope ratio mass spectrometry has been the mainstay of δ13C analyses both at natural abundance and in tracer studies. More recently, compound‐specific isotope analysis (CSIA) has become established, whereby organic constituents are separated online by gas or liquid chromatography before oxidation and analysis of CO2 for constituent δ13C. Theoretically, there should be concordance between bulk δ13C measurements and carbon‐weighted δ13C measurements of carbon‐containing constituents. To test the concordance between the bulk and CSIA, fish oil was chosen because the majority of carbon in fish oil is in the triacylglycerol form and ~95% of this carbon is amenable to CSIA in the form of fatty acids. Bulk isotope analysis was carried out on aliquots of oil extracted from 55 fish samples and δ13C values were obtained. Free fatty acids (FFAs) were produced from the oil samples by saponification and derivatised to fatty acid methyl esters (FAMEs) for CSIA by gas chromatography/combustion/isotope ratio mass spectrometry. A known amount of an internal standard (C15:0 FAME) was added to allow analyte quantitation. This internal standard was also isotopically calibrated in both its FFA (δ13C = ?34.30‰) and FAME (δ13C = ?34.94‰) form. This allowed reporting of FFA δ13C from measured FAME δ13C values. The bulk δ13C was reconstructed from CSIA data based on each FFA δ13C and the relative amount of CO2 produced by each analyte. The measured bulk mean δ13C (SD) was ?23.75‰ (1.57‰) compared with the reconstructed bulk mean δ13C of ?23.76 (1.44‰) from CSIA and was not significantly different. Further analysis of the data by the Bland‐Altman method did not show particular bias in the data relative to the magnitude of the measurement. Good agreement between the methods was observed with the mean difference between methods (range) of 0.01‰ (?1.50 to 1.30). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Photolysis of (17,18)O-labeled water in the presence of molecular oxygen is accompanied by transfer of (17)O and (18)O isotopes from water to oxygen, demonstrating that photoinduced oxidation of water does occur. The reaction exhibits the following isotope effect: oxidation of H(2)(17)O is faster by 2.6% (in the Earth's magnetic field) and by 6.0% (in the field 0.5 T) than that of H(2)(18)O. The effect is supposed to arise in the two spin-selective, isotope-sorting reactions-recombination and disproportionation-in the pairs of encountering HO(2) radicals. The former is spin allowed from the singlet state; the latter occurs only in the triplet one. Nuclear spin sorting produced by these reactions proceeds in opposite directions with the dominating contribution of recombination, which provides observable (17)O/(18)O isotope fractionation in favor of magnetic isotope (17)O. Neither isotope exchange nor the reaction itself occurs in the dark.  相似文献   

8.
9.
Isotope fractionation resulting from gas diffusion along a thermal gradient has always been considered entirely mass-dependent. A previous report, however, showed that non-mass-dependent (17)O anomalies can be generated simply by subjecting O(2) gas in an enclosure to a thermal gradient. To explore the underlying mechanism for the anomalies, we tested the effect of gas pressure, duration of experiment, and geometry of the apparatus on the (17)O anomalies for O(2) as well as on the (33)S or (36)S anomalies for SF(6) gas. The results are consistent with our proposal that a previously ignored nuclear spin effect on gas diffusion coefficient may be largely responsible for generating the observed anomalies. This discovery provides clues to some of the puzzling non-mass-dependent isotope signatures encountered in experiments and in nature, including the triple oxygen or quadruple sulfur isotope heterogeneity in the solar system.  相似文献   

10.
Marked differences in the laser action (1.315 μm) observed following the flash photolysis of CD3I and CH3I are reported (substantially greater outputs are observed with CD3I). These differences result from the significantly smaller cross section for quenching of I(5 2P ) by CD3I, relative to that for CH3I. Absolute values for the quenching cross sections have been determined using time resolved atomic absorption spectrophotometry. These data were employed in a computer simulated model which satisfactorily reproduced the light output from CH3I, CD3I and CF3I photochemical laser systems. It is concluded that isotopic substitution can markedly influence the cross section for quenching of an excited state and thus influence partitioning between the various available channels.  相似文献   

11.
The use of isotope ratio infrared spectroscopy (IRIS) for the stable hydrogen and oxygen isotope analysis of water is increasing. While IRIS has many advantages over traditional isotope ratio mass spectrometry (IRMS), it may also be prone to errors that do not impact upon IRMS analyses. Of particular concern is the potential for contaminants in the water sample to interfere with the spectroscopy, thus leading to erroneous stable isotope data. Water extracted from plant and soil samples may often contain organic contaminants. The extent to which contaminants may interfere with IRIS and thus impact upon data quality is presently unknown. We tested the performance of IRIS relative to IRMS for water extracted from 11 plant species and one organic soil horizon. IRIS deviated considerably from IRMS for over half of the samples tested, with deviations as large as 46‰ (δ2H) and 15.4‰ (δ18O) being measured. This effect was reduced somewhat by using activated charcoal to remove organics from the water; however, deviations as large as 35‰ (δ2H) and 11.8‰ (δ18O) were still measured for these cleaned samples. Interestingly, the use of activated charcoal to clean water samples had less effect than previously thought for IRMS analyses. Our data show that extreme caution is required when using IRIS to analyse water samples that may contain organic contaminants. We suggest that the development of new cleaning techniques for removing organic contaminants together with instrument‐based software to flag potentially problematic samples are necessary to ensure accurate plant and soil water analyses using IRIS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
As an alternative to isotope ratio mass spectrometry (IRMS), the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and the capacity for field‐based application for the analysis of the stable isotopes of water. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in incorrect results for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every 2 h for 24–48 h) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic compositions of the extracted water from these samples were measured using both an IRMS and an IRIS instrument. The results show that the mean discrepancies between the IRMS and IRIS approaches for δ18O and δD, respectively, were: –5.6‰ and ?75.7‰ for leaf water; –4.0‰ and ?23.3‰ for stem water; –3.4‰ and ?28.2‰ for root water; ?0.5‰ and –6.7‰ for xylem water; –0.06‰ and ?0.3‰ for xylem flow; and ?0.1‰ and 0.3‰ for soil water. The order of the discrepancy was: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling at nighttime did not remove the observed deviations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n?=?67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical power and certainty to distinguish between the endo- or exogenous origin of a urinary steroid.  相似文献   

14.
15.
16.
A series of leaching experiments with HF, HCl, HNO3 were carried out on samples of uranium minerals (uraninite and carnotite samples). Anomalously high234U/238U ratios were observed in some uranium fractions. The observed234U/238U activity ratios varied between the values of 1.019±0.155 and 6.210±0.504 (Ci/Ci), while the bulk carnotite sample had an activity ratio of 1.010±0.005 (Ci/Ci). These results are interpreted as due to alpha-recoil effect and changes in oxidation state of uranium.  相似文献   

17.
Highly selective isotope separation of deuterium has been demonstrated in laser-irradiated formaldehyde mixtures of H2CO and HDCO. Single step deuterium enrichment factors of 14 were achieved by photodissociation into HD and CO, using HeCd laser light at 325.03 nm. Initial deuterium concentration ranged from 0.015 mole percent (natural abundance) to 5 mole percent.  相似文献   

18.
Isotope ratio mass spectrometry (IRMS) was used to assess what contribution the technique could make towards the comparative analysis of matchstick samples within the 'normal' framework of a forensic investigation. A method was developed to allow the comparison of samples submitted as a result of an investigation, with the added advantage of rapid sample turn-around expected within this field. To the best of our knowledge this is the first time that wooden safety matches have been analysed using IRMS. In this particular case, bulk stable isotope analysis carrried out on a 'like-for-like' basis could demonstrate conclusively that matches seized from a suspect were different from those collected at the scene of crime. The maximum delta13C variability observed within one box was 2.5 per thousand, which, in conjunction with the error of measurement, was regarded to yield too wide an error margin as to permit differentiation of matchsticks based on 13C isotopic composition alone given that the 'natural' 13C abundance in wood ranges from -20 to -30 per thousand. However, from the delta2H values obtained for crime scene matches and seized matches of -114.5 per thousand and -65 per thousand, respectively, it was concluded that the matches seized were distinctly different from those collected at the crime scene.  相似文献   

19.
Conclusions Magnetic isotope effects from tin are not observed during the isotope analysis of the products from reactions involving trimethylstannyl radicals. One of the possible reasons for this is the demonstrated presence of degenerate exchange processes between the initial compounds and the products during the reaction.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2207–2211, October, 1985.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号