共查询到20条相似文献,搜索用时 15 毫秒
1.
J. R. Cushnir S. Naylor J. H. Lamb P. B. Farmer 《Journal of mass spectrometry : JMS》1993,28(5):552-558
Human exposure to carcinogenic alkylating agents can lead to the formation of covalently bound adducts in DNA, some of which are excreted in urine as alkylated purines following DNA degradation and repair. Tandem mass spectrometric methods have been developed for the qualitative and quantitative determination of such alkylpurines in human urine. Short-chain alkyl- and hydroxyalkylguanines have been synthesized with the substituents at the N-7-, O6- and N2-positions of guanine. Examination of the product ion scans of their molecular ions (electron impact (EI) ionization) revealed that the ion at m/z 151, [guanine]+, was common to all of the alkylguanines studied, with the exception of the methylated analogues. Precursor ion scans of this ion on partially purified human urine extracts showed the presence of several ions (e.g. m/z 179, 195) which were consistent with molecular ions for alkylguanines. The presence of these and other constituents was confirmed by product ion spectra of molecular ions (EI and fast atom bombardment), and by high-performance liquid chromatographic separation prior to tandem mass spectrometry (MS/MS). Evidence was obtained for the presence of N-7-methyl-, N2-dimethyl-, N2-dimethyl-, N2-ethyl- and N-7-(2-hydroxyethyl)guanine. Quantitative methods were established for these five alkyl guanines using gas chromatography mass spectrometry (GC/MS) and GC/MS/MS. Deuterated internal standards were synthesized and added to the urine prior to extraction of alkylpurines by Sep-Pak cartridge chromatography. The products were converted into their tert-butyldimethylsilyl derivatives and analysed by selected ion monitoring (SIM) of [M – 57]+ or by multiple reaction monitoring (MRM) of the fragmentation M+˙ → [M – 57]+. The MRM method yielded values for N-7-methylguanine of 2.57 ± S.D. 1.32 mg day?1 (n = 6), N2-methylguanine of 0.31 ± 0.10 mg day?1 (n = 10) and N2-dimethylguanine of 0.21 ± 0.23 mg day?1 (n = 10). N2-Ethyl- and N-7-(2-hydroxyethyl)guanine could only be detected by SIM at levels of ~0.5 and 2 μg day?1, respectively. The MRM analyses, although inherently less sensitive than the SIM analyses, exhibit greater selectivity and consequently fewer contaminant ions. 相似文献
2.
A. Vonaparti E. Lyris Y. S. Angelis I. Panderi M. Koupparis A. Tsantili‐Kakoulidou R. J. B. Peters M.W.F. Nielen C. Georgakopoulos 《Rapid communications in mass spectrometry : RCM》2010,24(11):1595-1609
Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, β2‐agonists, β‐blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single‐step liquid‐liquid extraction of hydrolyzed urine and the use of a rapid‐resolution liquid chromatography/high‐resolution time‐of‐flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4‐methyl‐2‐hexanamine, which resulted in re‐reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
A. Vonaparti E. Lyris I. Panderi M. Koupparis C. Georgakopoulos 《Rapid communications in mass spectrometry : RCM》2009,23(7):1020-1028
In equine sport, theobromine is prohibited with a threshold level of 2 µg mL?1 in urine, hence doping control laboratories have to establish quantitative and qualitative methods for its determination. Two simple liquid chromatography/mass spectrometry (LC/MS) methods for the identification and quantification of theobromine were developed and validated using the same sample preparation procedure but different mass spectrometric systems: ion trap mass spectrometry (ITMS) and time‐of‐flight mass spectrometry (TOFMS). Particle‐free diluted urine samples were directly injected into the LC/MS systems, avoiding the time‐consuming extraction step. 3‐Propylxanthine was used as the internal standard. The tested linear range was 0.75–15 µg mL?1. Matrix effects were evaluated analyzing calibration curves in water and different fortified horse urine samples. A great variation in the signal of theobromine and the internal standard was observed in different matrices. To overcome matrix effects, a standard additions calibration method was applied. The relative standard deviations of intra‐ and inter‐day analysis were lower than 8.6 and 7.2%, respectively, for the LC/ITMS method and lower than 5.7 and 5.8%, respectively, for the LC/TOFMS method. The bias was less than 8.7% for both methods. The methods were applied to two case samples, demonstrating simplicity, accuracy and selectivity. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
C. Chebbah O. J. Pozo K. Deventer P. Van Eenoo F. T. Delbeke 《Rapid communications in mass spectrometry : RCM》2010,24(8):1133-1141
An accurate and precise method for the quantification of 11‐nor‐Δ9‐tetrahydrocannabinol‐9‐carboxylic acid (THCA) in urine by liquid chromatography/tandem mass spectrometry (LC/MS/MS) for doping analysis purposes has been developed. The method involves the use of only 200 µL of urine and the use of D9‐THCA as internal standard. No extraction procedure is used. The urine samples are hydrolysed using sodium hydroxide and diluted with a mixture of methanol/glacial acetic acid (1:1). Chromatographic separation is achieved using a C8 column with gradient elution. All MS and MS/MS parameters were optimised in both positive and negative electrospray ionisation modes. For the identification and the quantification of THCA three product ions are monitored in both ionisation modes. The method is linear over the studied range (5–40 ng/mL), with satisfactory intra‐and inter‐assay precision, and the relative standard deviations (RSDs) are lower than 15%. Good accuracy is achieved with bias less than 10% at all levels tested. No significant matrix effects are observed. The selectivity and specificity are satisfactory, and no interferences are detected. The LC/MS/MS method was applied for the analysis of 48 real urine samples previously analysed with a routine gas chromatography/mass spectrometry (GC/MS) method. A good correlation between the two methods was obtained (r2 > 0.98) with a slope close to 1. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
Xue Li Xiaowei Fang Zhiqiang Yu Guoying Sheng Minghong Wu Jiamo Fu Huanwen Chen 《Analytica chimica acta》2012
Urinary creatinine (CRE) is an important biomarker of renal function. Fast and accurate quantification of CRE in human urine is required by clinical research. By using isotope dilution extractive electrospray ionization tandem mass spectrometry (EESI–MS/MS) a high throughput method for direct and accurate quantification of urinary CRE was developed in this study. Under optimized conditions, the method detection limit was lower than 50 μg L−1. Over the concentration range investigated (0.05–10 mg L−1), the calibration curve was obtained with satisfactory linearity (R2 = 0.9861), and the relative standard deviation (RSD) values for CRE and isotope-labeled CRE (CRE-d3) were 7.1–11.8% (n = 6) and 4.1–11.3% (n = 6), respectively. The isotope dilution EESI–MS/MS method was validated by analyzing six human urine samples, and the results were comparable with the conventional spectrophotometric method (based on the Jaffe reaction). Recoveries for individual urine samples were 85–111% and less than 0.3 min was taken for each measurement, indicating that the present isotope dilution EESI–MS/MS method is a promising strategy for the fast and accurate quantification of urinary CRE in clinical laboratories. 相似文献
6.
Jae Chul Cheong Sung Ill Suh Beom Jun Ko Jin Young Kim Moon Kyo In Won Jo Cheong 《Journal of separation science》2010,33(12):1767-1778
A simple and rapid GC‐MS method has been developed for the screening and quantification of many illicit drugs and their metabolites in human urine by using automatic SPE and trimethylsilylation. Sixty illicit drugs, including parent drugs and their metabolites that are possibly abused in Korea, can be monitored by this method. Among them, 24 popularly abused illicit drugs were selected for quantification. Very delicate optimizations were carried out in SPE, trimethylsilylation derivatization, and GC/MS to enable such remarkable achievements. Trimethylsilylated analytes were well separated within 21 min by GC‐MS. In the validation results, the LOD of all the analytes were in the range of 2–75 ng/mL. The LOQ of the quantified analytes were in the range of 5–98 ng/mL. The linearity (r2) of the quantified analytes ranged 0.990–1.000 in each concentration range between 10 and 1000 ng/mL. The mean recoveries ranged from 62 to 126% at three different concentrations of each analyte. The inter‐day and inter‐person accuracies were within ?13.3~14.9%, and ?10.1~13.0%, respectively, and the inter‐day and inter‐person precisions were less than 12.9%. The method was reliable and efficient for the screening and quantification of abused illicit drugs in routine urine analysis. 相似文献
7.
New clostebol metabolites in human urine by liquid chromatography time‐of‐flight tandem mass spectrometry and their application for doping control 下载免费PDF全文
Jianghai Lu María Fernández‐Álvarez Sheng Yang Genye He Youxuan Xu R. Aguilera 《Journal of mass spectrometry : JMS》2015,50(1):191-197
In this study, clostebol metabolic profiles were investigated carefully. Clostebol was administered to one healthy male volunteer. Urinary extracts were analyzed by liquid chromatography quadrupole time‐of‐flight mass spectrometry (MS) using full scan and targeted MS/MS techniques with accurate mass measurement for the first time. Liquid–liquid extraction and direct injection were applied to processing urine samples. Chromatographic peaks for potential metabolites were found by using the theoretical [M–H]? as target ion in full scan experiment, and their actual deprotonated ions were analyzed in targeted MS/MS mode. Fourteen metabolites were found for clostebol, and nine unreported metabolites (two free ones and seven sulfate conjugates) were identified by MS, and their potential structures were proposed based on fragmentation and metabolism pathways. Four glucuronide conjugates were also first reported. All the metabolites were evaluated in terms of how long they could be detected and S1 (4ξ‐chloro‐5ξ‐androst‐3ξ‐ol‐17‐one‐3ξ‐sulfate) was considered to be the long‐term metabolite for clostebol misuse detected up to 25 days by liquid–liquid extraction and 14 days by direct injection analysis after oral administration. Five conjugated metabolites (M2, M5, S2, S6 and S7) could also be the alternative biomarkers for clostebol misuse. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Parr MK Kazlauskas R Schlörer N Opfermann G Piper T Schulze G Schänzer W 《Rapid communications in mass spectrometry : RCM》2008,22(3):321-329
In recent years products containing 6alpha-methylandrost-4-ene-3,17-dione have appeared on the sport supplement market. Scientific studies have proven aromatase inhibition and anabolic and mild androgenic properties; however, no preparation has been approved for medical use up to now. In sports 6alpha-methylandrost-4-ene-3,17-dione has to be classified as a prohibited substance according to the regulations of the World Anti-Doping Agency (WADA). For the detection of its misuse the metabolism was studied following the administration of two preparations obtained from the Internet (Formadrol and Methyl-1-Pro). Several metabolites as well as the parent compounds were synthesized and the structures of 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, 6alpha-methylandrost-4-ene-3,17-dione, and 5beta-dihydromedroxyprogesterone were confirmed by nuclear magnetic resonance (NMR) spectroscopy. The main metabolite, 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, was found to be excreted as glucuronide and was still detectable in microg/mL amounts until urine collection was terminated (after 25 h). Additionally, samples from routine human sports doping control had already tested positive for the presence of metabolites of 6alpha-methylandrost-4-ene-3,17-dione. Screening analysis can be easily performed by the existing screening procedure for anabolic steroids using 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one as target substance (limit of detection <10 ng/mL). Its discrimination from the closely eluting drostanolone metabolite, 3alpha-hydroxy-2alpha-methyl-5alpha-androstan-17-one, is possible as the mono-TMS derivative. 相似文献
9.
Acylglycines play a crucial regulatory and detoxification role in the accumulation of the corresponding acyl CoA esters and are an important class of metabolites in the diagnoses of inborn errors of metabolism. Sensitive quantification of a large number of acylglycines not only improves diagnosis but also enables the discovery of potential new biomarkers of diseases. We report an ultra-high performance liquid chromatography tandem mass spectrometry (UPLC–MS) method for quantifying acylglycines in human urine with high sensitivity. This method is based on the use of a newly developed isotope labeling reagent, p-dimethylaminophenacyl (DmPA) bromide, to label acylglycines to improve detection sensitivity. Eighteen acylglycines, namely acetylglycine, propionylglycine, isobutyrylglycine, butyrylglycine, 4-hydroxyphenylacetylglycine, 2-furoylglycine, tiglylglycine, 2-methybutyrylglycine, 3-methylcrotonylglycine, isovalerylglycine, valerylglycine, hexanoylglycine, phenylacetylglycine, phenylpropionylglycine, glutarylglycine, heptanoylglycine, octanoylglycine and suberylglycine, were measured. This method uses calibration standards prepared in surrogate matrix (un-derivatized urine) and stable-isotope labeled analytes as the internal standards. The analysis was carried out in the positive ion detection mode using multiple reaction monitoring (MRM) survey scans. The calibration curves were validated over the range of 1.0–500 nM. The method achieved a lower limit of quantitation (LLOQ) of 1–5 nM for all analytes, as measured by the standard derivations associated with calibration curves and confirmed in surrogate matrix; the signal-to-noise ratio at LLOQ ranged from 12.50 to 156.70. Both accuracy (% RE or relative error) and precision (% CV) were <15%. Matrix effects were minimized using the surrogate matrix. All eighteen analytes were stable in urine for at least 5 h at room temperature, autosampler (4 °C) for 24 h, 7 weeks at −20 °C and after three freeze/thaw cycles. This surrogate matrix approach was validated using a standard addition experiment. As an example of applications, the endogenous concentrations of all eighteen analytes in urine samples of 20 healthy individuals collected in three consecutive days (i.e., 60 samples) were determined; there was no significant correlation found between the acylglycine profile and gender or body mass indices. 相似文献
10.
Mohamed Ben‐Eltriki Vishwa Somayaji Raj S. Padwal Dion R. Brocks 《Biomedical chromatography : BMC》2013,27(8):1012-1017
A liquid chromatographic mass spectrometric assay for the quantification of azithromycin in human plasma was developed. Azithromycin and imipramine (as internal standard, IS) were extracted from 0.5 mL human plasma using extraction with diethyl ether under alkaline conditions. Chromatographic separation of drug and IS was performed using a C18 column at room temperature. A mobile phase consisting of methanol, water, ammonium hydroxide and ammonium acetate was pumped at 0.2 mL/min. The mass spectrometer was operated in positive ion mode and selected ion recording acquisition mode. The ions utilized for quantification of azithromycin and IS were m/z 749.6 (M + H) + and m/z 591.4 (fragment) for azithromycin, and 281.1 m/z for internal standard; retention times were 6.9 and 3.4 min, respectively. The calibration curves were linear (r2 > 0.999) in the concentration ranges of 10–1000 ng/mL. The mean absolute recoveries for 50 and 500 ng/mL azithromycin and 1 µg/ mL IS were >75%. The percentage coefficient of variation and mean error were <11%. Based on validation data, the lower limit of quantification was 10 ng/mL. The present method was successfully applied to determine azithromycin pharmacokinetic parameters in two obese volunteers. The assay had applicability for use in pharmacokinetic studies. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Simultaneous analysis of 210 prohibited substances in human urine by ultrafast liquid chromatography/tandem mass spectrometry in doping control 下载免费PDF全文
Eun Sook Jeong So‐Hee Kim Eun‐Ju Cha Kang Mi Lee Ho Jun Kim Sang‐Won Lee Oh‐Seung Kwon Jaeick Lee 《Rapid communications in mass spectrometry : RCM》2015,29(4):367-384
12.
A highly precise and accurate analytical method utilizing an isotope‐dilution liquid chromatography tandem mass spectrometry was developed and validated to determine two perfluorochemicals (PFCs): perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) in human milk samples. Identification of the analytes was confirmed under negative electrospray with multiple reaction monitoring (MRM) mode by the monitoring of one precursor ion and two product ions, and matching of relative ion intensities of the ions concerned in samples and calibration standards. Quantitation was based on the measurement of concentration ratios of the natural and labeled‐analogues in the samples and calibration mixtures. The isotope‐labeled internal standards were also used to correct the matrix effect and variations associated with the analysis. Intra‐ and inter‐day repeatabilities of replicate analyses of the PFOA and PFOS in milk samples were below 8%. The limit of quantitation was 2 pg/mL in a 5 mL milk sample. The PFOA and PFOS were detected in all 20 human milk samples at concentrations from 27.0 to 207 pg/mL. This is the first study to measure the occurrence of PFOA and PFOS in human milk from Taiwan. 相似文献
13.
Deventer K Pozo OJ Van Eenoo P Delbeke FT 《Rapid communications in mass spectrometry : RCM》2007,21(18):3015-3023
A new screening procedure for 18 narcotics in urine for anti-doping purposes has been developed using liquid chromatography/triple quadrupole mass spectrometry (LC/MS). Electrospray ionization (ESI) was used as interface. Infusion experiments were performed for all substances to investigate their mass spectrometric behaviour in terms of selecting product specific ions. These product ions were then used to develop a tandem mass spectrometric method using selected reaction monitoring (SRM). For the LC/MS analysis, chromatography was performed on an octadecylsilane column. The total run time of the chromatographic method was 5.5 min. For the sample preparation prior to LC/MS analysis, the urine samples were liquid-liquid extracted at pH 9.5 after overnight enzymatic hydrolysis. Two extraction solvents were evaluated: dichloromethane/methanol 9/1 (v/v), which is currently used for the extraction of narcotics, and diethyl ether, used for the extraction of steroids. With diethyl ether the detection limits for all compounds ranged between 0.5 and 20 ng/mL and with the mixture containing dichloromethane the detection limits ranged between 0.5 and 10 ng/mL. Taking into account the minimum required performance limits of the World Anti-Doping Agency of 200 ng/mL for narcotics, diethyl ether can also be considered as extraction solvent for narcotics. Finally, the described method was applied to the analysis of urine samples previously found to contain narcotics by our routine gas chromatography/mass spectrometry (GC/MS) method. 相似文献
14.
Simone Esposito Koen Deventer Guy T'Sjoen Anna Vantilborgh Peter Van Eenoo 《Biomedical chromatography : BMC》2013,27(2):240-245
The World Anti‐Doping Agency (WADA) has recently added desmopressin, a synthetic analogue of the endogenous peptide hormone arginine vasopressin, to the Prohibited List, owing to the potential masking effects of this drug on hematic parameters useful to detect blood doping. A qualitative method for detection of desmopressin in human urine by high‐performance liquid chromatography–electrospray tandem mass spectrometry (LC‐ESI‐MS/MS) has been developed and validated. Desmopressin purification from urine was achieved by means of delipidation with a 60:40 di‐isopropyl ether/n‐butanol and solid‐phase extraction with WCX cartridges. The lower limit of detection was 25 pg/mL. Extraction recovery was determined as 59.3% (SD 29.4), and signal reduction owing to ion suppression was estimated to be 42.7% (SD 12.9). The applicability of the method was proven by the analysis of real urine samples obtained after intravenous, oral and intranasal administration of desmopressin, achieving unambiguous detection of the peptide in all the cases. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
Maurer HH 《Journal of mass spectrometry : JMS》2006,41(11):1399-1413
Hyphenated mass spectrometric techniques, particularly gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), are indispensable tools in clinical and forensic toxicology and in doping control owing to their high sensitivity and specificity. They are used for screening, library-assisted identification and quantification of drugs, poisons and their metabolites, prerequisites for competent expertise in these fields. In addition, they allow the study of metabolism of new drugs or poisons as a basis for developing screening procedures in biological matrices, most notably in urine, or toxicological risk assessment. Concepts and procedures using GC/MS and LC/MS techniques in the areas of analytical toxicology and the role of mass spectral libraries are presented and discussed in this feature article. Finally, perspectives of their future position are discussed. 相似文献
16.
17.
18.
Since 1999, insulin belongs to the list of prohibited substances of the International Olympic Committee and the World Anti-Doping Agency. Except for patients suffering from insulin-dependent diabetes mellitus, the administration of insulin is not allowed. Therapeutics developed to treat non-insulin-dependent diabetes mellitus act as releasing factors of endogenously produced insulin or improve its efficiency mediating the glucose uptake into insulin-dependent tissues. Hence, these compounds are also relevant for sports drug testing, and a fast, robust, and sensitive assay was developed to identify 12 oral antidiabetic agents or respective hydroxylated metabolites in human urine. Urine specimens are enzymatically hydrolyzed; target analytes are extracted by liquid-liquid extraction and identified by means of liquid chromatography interfaced to tandem mass spectrometry by electrospray ionization. Detection limits of respective drugs ranged between 10 and 30 ng/mL, metabolites of therapeutics were characterized by diagnostic fragmentation pathways upon collisionally activated dissociation of protonated molecules, and general fragmentation routes were proposed. 相似文献
19.
《Rapid communications in mass spectrometry : RCM》2004,18(24):3152-3152
The original article to which this Erratum refers was published in Rapid Commun. Mass Spectrom. 2004; 18 : 2059–2064 相似文献