首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
At the present time mixed conductors find wide application. They are used in different electrochemical devices as electrode material. An attempt was made to obtain electrosensitive composition with electronic-ionic conductivity on the basis of silver salts taking into account the data on dissolution of silver in -Ag2S (1) as well as the results of studying systems on the basis of silver chalogenides (2,3). These compositions can be used as electrode materials.  相似文献   

2.
We studied the growth mode and electronic properties of ultra-thin silver films deposited on Ni(1 1 1) surface by means of scanning tunnelling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES). The formation of the 4d-quantum well states (QWS) was analysed within the phase accumulation model (PAM). The electronic structure of the 1 ML film is consistent with the silver layer which very weakly interacts with the supporting surface. The line-shape analysis of Ag-4dxz,yz QWS spectrum support the notion of strong localization of these states within the silver layer. The asymmetry of the photoemission peaks implies that the decay of the photo-hole appears to be influenced by the dynamics of the electrons in the supporting surface.  相似文献   

3.
A facile strategy has been developed for the preparation of bimetallic gold–silver (Au–Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)–silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI–Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV–vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV–vis characteristic absorbances of {PEI–Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core–shell structures in the TEM images confirm the formation of bimetallic Au–Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20–25 nm. The resulting {PEI–Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI–Ag/Au}n films are more attractive compared to {PEI–Ag/PSS}n and {PEI/Au}n films.  相似文献   

4.
The adsorption of chlorine on the Ag(111) surface has been studied using LEED, Auger and temperature programmed desorption. Chlorine adsorbs dissociately with an initial sticking probability of ~ 0.4, and a precursor state is implicated in the chemisorption process. The chlorine appears to form a close-packed monolayer with the same packing density as in AgCl(111), and is epitaxially related to the substrate mesh. Chlorine continues to adsorb above a monolayer in coverage, though the sticking probability drops precipitately, being ~ 0.01 after the adsorption of 5 monolayers at 300 K. There is little increase in the chlorine Auger signal above one monolayer coverage at 300 K, but when adsorption is carried out at 240 K the chlorine signal is more than doubled. This is interpreted as being due to the formation of a layer structure of alternate Cl and Ag layers at the lower temperature, while adsorption at 300 K results in dissolution of subsurface Cl into the bulk of the crystal. Upon heating, the low temperature layer structure is destroyed, the chlorine signal diminishes to a limiting value at 450 K equivalent to the value for one adsorbed monolayer — apparently due to the dissolution of the near surface Cl layers into the bulk. However, the chlorine re-emerges at the surface at ~ 600 K, probably due to an exothermic heat of solution of Cl in the silver lattice. Desorption from the multilayers peaks at 670 K and both AgCl and Ag are desorbed coincidently with kinetics identical to those for the sublimation of bulk AgCl (ΔH = 235 kJ mol?1, ΔS = 90 JK?1 mol?1). After the multilayers have desorbed, the final Cl layer desorbs in a higher temperature peak ( ~ 760 K) as AgCl (no silver desorption) which shows complex desorption kinetics indicative of the strong influence of a precursor state in the desorption process.  相似文献   

5.
The Fermi surface anisotropy of (Bi1?x Sbx)2Te3 single crystals (0.25 ≤ x ≤ 1) was studied by analyzing the angular dependence of the frequency of Shubnikov-de Haas oscillations and the effect of tin and silver doping on the thermoelectric power in these crystals in the temperature range 77 ≤ T ≤ 300 K. It was shown that silver doping of (Bi1?x Sbx)2Te3 mixed crystals produces acceptors, while silver in Bi2Te3 acts as a donor. Tin also exhibits acceptor properties. Both tin and silver doping of p-(Bi1?x Sbx)2Te3 mixed crystals decrease the thermoelectric power due to an increase in the hole concentration.  相似文献   

6.
The yield of triton production from silver irradiated with bremsstrahlung ranging in maximum energy between 31.2 and 55.7 MeV was measured relative to the C(γ, n)C11-reaction. The silver targets were dissolved in nitric acid, the water converted to hydrogen gas, and the tritium activity counted in a low-level Geiger counter. Above threshold, the quantityσ y (approximately equal to the bremsstrahlung-weighted cross section) increases roughly linearly with maximum energy and reaches (19±1) μb at 55.7 MeV. A comparison with the statistical theory of nuclear evaporation shows that the experimental yields exceed the theoretical predictions by a factor of 100 to 1000.  相似文献   

7.
Corn-like cellulose nanocrystals/silver (CNC/Ag) nanocomposites were prepared by formic acid/hydrochloric acid hydrolysis of commercial microcrystalline cellulose (MCC), and redox reaction with silver ammonia aqueous solution (Ag(NH3)2(OH)) in one-pot green synthesis, in which the preparation and modification of CNCs were performed simultaneously and the resultant modified CNCs could be as reducing, stabilizing and supporting agents for silver nanoparticles. The influences of the Ag+ ion concentrations on the morphology, microstructure, and properties of the CNC/Ag nanocomposites were investigated. It is found that corn-like CNC/Ag nanocomposites containing Ag nanoparticles with diameter of about 20–40 nm were obtained. Compared to the MCCs, high crystallinity of 88.5 % and the maximum degradation temperature (T max) of 364.5 °C can be achieved. Moreover, the CNC/Ag nanocomposites showed strong antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Furthermore, such nanocomposites can act as bifunctional nanofillers to improve thermal stability, mechanical property, and antibacterial activity of commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(lactic acid).  相似文献   

8.
Nuclear magnetic resonance of110Ag has been observed in silver halides using the polarized neutron capture,β decay anisotropy method. The magnetic moment was determined asμ I(110Ag)=2.7084 (5) nm (uncorrected).  相似文献   

9.
Relativistic oscillator strengths have been calculated for transitions in the principal, sharp and diffuse series of Cu(I), Ag(I) and Au(I) spectra. The computations have been performed by employing a semiempirical method which includes exchange and core-polarization effects. A comparison is presented for the calculated ?ik values with experimental and other theoretical data. The influence of core-polarization effects on oscillator strengths is discussed.  相似文献   

10.
We have studied the adsorption properties of the π-donor molecule TXF, where X stands for the chalcogens sulfur and selenium [TTF = tetrathiafulvalene, TSF = tetraselenafulvalene], respectively, on the (110) surface of silver by means of periodic plane-waves based DFT (Density Functional Theory) calculations using slab models. We have determined and characterized the stable adsorption sites and have evaluated the charge transfer from TXF molecules into the surface. The simulation of the vibrational spectra for TXF and the fully deuterated TXF species has permitted to identify the fingerprints of both molecules on this surface.  相似文献   

11.
Different silver nanostructures have been rapidly synthesized under microwave irradiation from a solution of silver nitrate (AgNO3) and ββ-D glucose; neither additional reducing nor capping agent were required in this soft green solution approach. Not only spherical nanoparticles, but also necklace and wires have been synthesized. The plasmon resonances of the synthesized silver nanostructures were tuned by varying the irradiation time and hence by changing size and morphology of nanostructures. The obtained nanostructures were characterized by X-Ray diffraction (XRD), Uv–Vis spectroscopy (Uv–Vis), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The change of peak position and the shape of the absorption spectra were clearly observed during the whole reaction process; in fact, it was evidenced that initially Ag nanoparticles were formed, which, as reaction time elapsed, self-assembled and fused with each other to yield nanowires.  相似文献   

12.
Chalcogenide thin films could be prepared by many experimental methods resulting in some differences in structure and physicochemical properties of prepared films. In this work, the As33S67 amorphous films were prepared by three different preparation techniques: vacuum thermal evaporation (TE), pulsed laser deposition (PLD) and spin-coating (SC). A silver film was deposited on the top of the As33S67 films and photodoped.The X-ray diffraction analysis showed significant differences in arrangement between bulk glass and thin films and also among films themselves. The Raman spectroscopy showed that the Raman spectra of PLD film and bulk glass are almost similar. On the other hand, TE films contain higher amount of homopolar bonds As–As and S–S. The value of refractive index of As33S67 bulk glass was 2.31. All prepared films have lower index of refraction contrary to bulk glass, i.e. TE∼2.27, PLD∼2.20 and SC∼1.90. The increase of refractive index with silver concentration is shown either. The optical bandgap of undoped As–S prepared films was different: TE∼2.42 eV, PLD∼2.45 eV and SC∼2.54 eV.  相似文献   

13.
Silver (Ag) and silver sulfide (Ag2S) nanoparticles were synthesized in a sago starch matrix. The resulting nanocomposites were investigated using structural, optical and thermal methods. XRD spectra of the nanocomposites confirmed the presence of nanostructured silver (cubic phase) and silver sulfide (monoclinic phase) in the matrix. TEM micrographs showed that the nanoparticles are mostly spherical in shape. Analyzes of the optical properties of the silver nanocomposite aqueous dispersions/solutions of various concentrations were carried out. The results and the theoretical considerations suggested that at high concentrations there is a release of silver nanoparticles from the composite in the water environment. Further dilution produces homogeneous solution in which silver nanoparticles are capped with starch macromolecules. TGA analysis revealed reduced thermal stability of the nanocomposites with respect to pure starch matrix.  相似文献   

14.
《Solid State Ionics》2006,177(9-10):939-947
The interactions between oxygen molecules and a silver surface or a CeO2(111) supported atomic layer of silver are predicted using first-principles calculations based on spin polarized DFT with PAW method. The juncture between the CeO2(111), the atomic layer of silver, and O2 represents a triple-phase boundary (TPB) whereas the interface between silver surfaces and O2 corresponds to a 2-phase boundary (2PB) in a solid oxide fuel cell (SOFC). Results suggest that the O2 dissociation process on a monolayer of silver supported by CeO2(111) surfaces (or TPB) with oxygen vacancies has lower reaction barrier than on silver surfaces (or 2PB), and the dissociated oxygen ions can quickly bond with subsurface Ce atom via a barrierless and highly exothermic reaction. The oxygen vacancies at TPB are found to be responsible for the lower energy barrier and high exothermicity because of the strong interaction between subsurface Ce and adspecies, implying that oxygen molecules prefer being reduced at TPB than on silver surfaces (2PB). The results suggest that, for a silver-based cathode in a SOFC, the adsorption and dissociation of oxygen occur rapidly and the most stable surface oxygen species would be the dissociated oxygen ion with − 0.78|e| Bader charges; the rate of oxygen reduction is most likely limited by subsequent processes such as diffusion or incorporation of the oxygen ions into the electrolyte.  相似文献   

15.
《Current Applied Physics》2009,9(5):1097-1105
TiO2 nanoparticles doped with different Ag contents were prepared by a modified sol–gel method, using titanium tetraisopropoxide and silver nitrate as precursors and 2-propanol as solvent. Silver was incorporated into the TiO2 matrix via decomposition of AgNO3 during thermal treatment in different atmospheres. Effects of Ag doping on the crystallization and phase transition of the TiO2 nanoparticles were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy techniques. While air annealing incorporates silver into TiO2 matrix in silver oxide form, annealing in nitrogen incorporates metallic silver into TiO2. Formation of silver oxide increases the thermal stability of the TiO2 particles. Silver oxide affects the crystallization process of TiO2 particles and the temperature of transition form anatase to rutile. On the other hand, presence of metallic silver in the samples annealed in nitrogen atmosphere decreases the temperature of phase transition of TiO2 nanoparticles.  相似文献   

16.
The 3D scaffold type biocomposites of gelatin/silver nanoparticles were prepared through the silver nanoparticles (Ag NPs) formation in gelatin solution using solution plasma process (SPP) and their antifungal activity was evaluated. The mixture of 3% gelatin solution and silver precursor (AgNO3; 1–10 mM) was subject to discharge at high voltage (1600 V) under the controlled conditions to form the suspension of Ag NPs in the gelatin matrix. The freeze-drying process of lyophilization was employed to fabricate the 3D scaffold type biocomposite of gelatin/Ag NPs from the suspension. The water-insoluble property was improved by cross-linking using UV-irradiation (λ = 254 nm for 15 min). The physical and chemical characteristics of the biocomposite were investigated using UV–vis spectroscopy, EDS, FE-SEM, and TEM. The results indicated that the 3D scaffold biocomposite of gelatin/Ag NPs had spherical shape with approximately 11–12 nm of diameter. The antifungal activity analysis suggested that the biocomposite with Ag NPs could inhibit the growth of Candida albicans as well as that of hyphae and spores of Aspergillus parasiticus significantly. MIC of the biocomposite for C. albicans and A. parasiticus was determined as 80 μg/ml and 240 μg/ml of Ag NPs, respectively. The growth inhibition of 92.8% was observed in the biocomposite with 10 mM Ag against C. albicans.  相似文献   

17.
《Surface science》1986,177(3):515-525
The adsorption of bromine on the (110) surface of silver has been studied by ultraviolet ( = 21.2 and 40.8 eV) photoelectron spectroscopy in the temperature range of 100–300 K. Four different adsorption and reaction states could be detected. For fractional monolayer coverages Br2 adsorbs dissociatively on the Ag(110) surface. The chemisorption of bromide leads to new emission features at about 3 and 5.2 eV below EF, which are assigned as occupied antibonding structures (3 eV) and as bonding Br4px, y orbitals (5.2 eV). At 100 K, further bromide adsorption leads to the formation of an AgBr layer with molecular adsorbed bromine on top of this corrosion layer. The He I spectrum is dominated by structures at 3.5, 5.8 and 7.5 eV which are due to emission from the πg, πu and σg molecular orbitals of Br2. The buildup of the AgBr layer is clearly demonstrated by desorbing the molecular bromine at about 150 K. The resulting spectrum of the AgBr layer shows peaks at 2.5 and 3.4 eV with p- and mixed-in d-character and peaks at 4.1, 5.2 and 6.1 eV which are primarily d-like. Heating of the AgBr layer up to 300 K results in a transformation from a 2D layer into a 3D agglomeration of larger AgBr clusters on top of a Br/Ag(110) chemisorption layer.  相似文献   

18.
This work evaluates the dosimetric properties of crystals of CaSO4 doped with unusual elements, such as europium (Eu) and silver (Ag), including their nanoparticle forms, after the incorporation of glass or Teflon and compares them with well-known thermoluminescent dosimeters (TLD). X-ray diffraction analyses showed that samples of doped CaSO4 exhibit only a single phase corresponding to the crystal structure of anhydrite. Optical spectroscopy confirmed the presence of Eu3+ in the crystal matrix and a luminescent gain due the presence of silver nanoparticles. The composites showed thermoluminescent emission glow curves, with a single peak centered at approximately 200 °C for pellets with Teflon and at 230 °C for pellets with glass. The dosimeters based on calcium sulfate doped with europium and silver nanoparticles provided the most intense thermoluminescent (TL) emission of the composites studied. In comparison with commercial TLD, such as LiF:Mg,Ti and CaSO4:Dy, the CaSO4:Eu,Ag(NP)+glass produced in this work presented similar low detection limits and higher sensitivity. The new methods for the preparation of dosimeters and the incorporation of glass are shown to be viable because all of the samples presented a linear, reproducible and first order kinetic TL emission.  相似文献   

19.
The optical properties of mixed (Ni0.5Ag0.5)n and Pt/Ag clusters are investigated in the size range 2-5 nm. Low Energy Ion Spectroscopy (LEIS) experiments show that the cluster surface is entirely covered by silver atoms for the two systems. The optical spectra of Ni/Ag clusters exhibit a large Surface Plasmon Resonance (SPR), damped and widened when the cluster size decreases, in agreement with a classical model assuming a core-shell geometry and including the reduction of the conduction electron mean-free path in the silver shell. For Pt/Ag clusters, no SPR emerges in the size range 2-5 nm, although it is predicted within a classical model, a pronounced SPR appearing only for clusters larger than 10 nm in diameter.  相似文献   

20.
In this work, Ag2CO3 nanoparticles (NPs) (as a n-type semiconductor) incorporated in mordenite zeolite (MOR) by a facile precipitation method. Silver halides, AgCl (as a p-type semiconductor) and AgBr (as a n-type semiconductor), with different weight percentage (20%, 40% and 50%) were coupled into Ag2CO3-MOR nanocomposite (NC) and producing a series of novel AgCl/Ag2CO3 (p-n heterojunction)-MOR and AgBr/Ag2CO3 (n-n heterojunction)-MOR NCs. The effects of silver halides on the Ag2CO3–MOR catalyst for the photocatalytic degradation of methyl blue (MB) under visible light irradiation have been investigated. The structure, composition and optical properties of NCs were investigated by UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). The prepared AgX/Ag2CO3-MOR NCs with the optimal content of AgX (50 wt%) indicated higher photocatalytic activity than that of the Ag2CO3-MOR and Ag2CO3. The cycle experiments on the heterojuctions NCs indicated that photocatalytic stability of AgBr/Ag2CO3-MOR NC was more than AgCl/Ag2CO3-MOR NC in all cycles. On the basis of the experimental results, a possible mechanism for the enhanced photocatalytic activity and photoinduced stability of silver compounds was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号