首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electron and proton transfer in phenol‐imidazole‐base systems (base = NH2? or OH?) were investigated by density‐functional theory calculations. In particular, the role of bridge imidazole on the electron and proton transfer was discussed in comparison with the phenol‐base systems (base = imidazole, H2O, NH3, OH?, and NH2?). In the gas phase phenol‐imidazole‐base system, the hydrogen bonding between the phenol and the imidazole is classified as short strong hydrogen bonding, whereas that between the imidazole and the base is a conventional hydrogen bonding. The n value in spn hybridization of the oxygen and carbon atoms of the phenolic CO sigma bond was found to be closely related to the CO bond length. From the potential energy surfaces without and with zero point energy correction, it can be concluded that the separated electron and proton transfer mechanism is suitable for the gas‐phase phenol‐imidazole‐base triads, in which the low‐barrier hydrogen bond is found and the delocalized phenolic proton can move freely in the single‐well potential. For the gas‐phase oxidized systems and all of the triads in water solvent, the homogeneous proton‐coupled electron transfer mechanism prevails. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
Density functional theory (DFT) calculations are made and least squares calibration performed for various halohydrocabons, which were 27 straight‐chain alkyl halides, 20 branch‐chain alkyl halides and 19 aromatic halides, to determine their enthalpies of formation (ΔHf). The mean absolute error (M. |A.E.|) in ΔHf across 66 molecular computations was only 7.8 kJ/mol (1.9 kcal/mol). Grouping the molecules by their structural characteristics improved M. |A.E.| of ΔHf by 0.2–2.2 kJ/mol over that obtained using corresponding modified data for the same 66 unclassified molecules.  相似文献   

3.
We have performed high‐level electronic structure computations on the most important species of the CHnP systems n = 1–3 to characterize them and provide reliable information about the equilibrium and vibrationally averaged molecular structures, rotational constants, vibrational frequencies (harmonic and anharmonic), formation enthalpies, and vertical excitation energies. Those chemical systems are intermediates for several important reactions and also prototypical phosphorus‐carbon compounds; however, they are often elusive to experimental detection. The present results significantly complement their knowledge and can be used as an assessment of the experimental information when available. The explicitly correlated coupled‐cluster RCCSD(T)‐F12 method has been used for geometry optimizations and vibrational frequency calculations. Vibrational configuration interaction theory has been used to account for anharmonicity effects. Basis‐set limit extrapolations have been carried out to determine accurate thermochemical quantities. Electronic excited states have been calculated with coupled‐cluster approaches and also by means of the multireference configuration interaction method. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Keto‐enol tautomerism in mono‐ and dithio‐substituted analogs of tropolone was investigated using electronic structure computations. Seven structural isomers of C7H6OS and four of C7H6S2 were optimized fully in gas phase at HF and B3LYP theoretical levels in combination with the 6‐311++g** basis set, as well as with the CBS‐QB3 and G3 methods. To examine the effects of an aqueous solvent on tautomeric equilibrium constants, each species was optimized in water using the self‐consistent reaction field polarizable continuum model at HF/6‐311++g** and B3LYP/6‐311++g** model chemistries. In both phases it was found that the enol forms were significantly more stable with respect to electronic energy and Gibbs free energy compared to the keto isomers, and outnumbered the keto species by several orders of magnitude. This was understood on the basis of elementary Hückel theory and the 4n + 2 rule, and supported by nucleus independent chemical shifts computations of NMR chemical shifts in these seven membered cyclic systems. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The X‐ray irradiation of binary mixtures of alkyl iodides R?I (R=CH3, C2H5, or i‐C3H7 radicals) and NF3 produces R?NF2 and R?F. Based on calculations performed at the CCSD(T), MRCI(SD+Q), G3B3, and G3 levels of theory, the former product arises from a bimolecular homolytic substitution reaction (SH2) by the alkyl radicals R, which attack the N atom of NF3. This mechanism is consistent with the suppression of R?NF2 by addition of O2 (an efficient alkyl radical scavenger) to the reaction mixture. The R?F product arises from the attack of R to the F atom of NF3, but additional contributing channels are conceivably involved. The F‐atom abstraction is, indeed, considerably more exothermic than the SH2 reaction, but the involved energy barriers are comparable, and the two processes are comparably fast.  相似文献   

6.
Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1?xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10 % cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation‐dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs.  相似文献   

7.
As a major greenhouse gas, methane, which is directly vented from the coal‐mine to the atmosphere, has not yet drawn sufficient attention. To address this problem, we report a methane nano‐trap that features oppositely adjacent open metal sites and dense alkyl groups in a metal–organic framework (MOF). The alkyl MOF‐based methane nano‐trap exhibits a record‐high methane uptake and CH4/N2 selectivity at 298 K and 1 bar. The methane molecules trapped within the alkyl MOF were crystalographically identified by single‐crystal X‐ray diffraction experiments, which in combination with molecular simulation studies unveiled the methane adsorption mechanism within the MOF‐based nano‐trap. The IAST calculations and the breakthrough experiments revealed that the alkyl MOF‐based methane nano‐trap is a new benchmark for CH4/N2 separation, thereby providing a new perspective for capturing methane from coal‐mine methane to recover fuel and reduce greenhouse gas emissions.  相似文献   

8.
Ni‐catalyzed cross‐coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 ( L1 =transN,N′‐dimethyl‐1,2‐cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI( L1 )X] (X=Cl, Br) with 9‐borabicyclo[3.3.1]nonane (9‐BBN)R1 to produce [NiI( L1 )(R1)], oxidative addition of R2X with [NiI( L1 )(R1)] to produce [NiIII( L1 )(R1)(R2)X] through a radical pathway, and C? C reductive elimination to generate the product and [NiI( L1 )X]. The transmetalation step is rate‐determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol?1). On the other hand, the cross‐coupling of alkyl chlorides can be catalyzed by Ni/ L2 ( L2 =transN,N′‐dimethyl‐1,2‐diphenylethane‐1,2‐diamine) because the activation barrier of transmetalation with L2 is lower than that with L1 . Importantly, the Ni0–NiII catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [NiII( L1 )(R1)(R2)] is very difficult.  相似文献   

9.
Alkali‐resistant osmabenzene [(SCN)2(PPh3)2Os{CHC(PPh3)CHCICH}] ( 2 ) can undergo nucleophilic aromatic substitution with MeOH or EtOH to give cine‐substitution products [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHCR}] (R=OMe ( 3 ), OEt( 4 )) in the presence of strong alkali. However, the reactions of compound 2 with various amines, such as n‐butylamine and aniline, afford five‐membered ring species, [(SCN)2(PPh3)2Os{CH?C(PPh3)CH?C(CH?NHR′)}] (R′=nBu( 8 ), Ph( 9 )), in addition to the desired cine‐substitution products, [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHC(NHR′)}] (R′=nBu( 6 ), Ph( 7 )), under similar reaction conditions. The mechanisms of these reactions have been investigated in detail with the aid of isotopic labeling experiments and density functional theory (DFT) calculations. The results reveal that the cine‐substitution reactions occur through nucleophilic addition, dissociation of the leaving group, protonation, and deprotonation steps, which resemble the classical “addition‐of‐nucleophile, ring‐opening, ring‐closure” (ANRORC) mechanism. DFT calculations suggest that, in the reaction with MeOH, the formation of a five‐membered metallacycle species is both kinetically and thermodynamically less favorable, which is consistent with the experimental results that only the cine‐substitution product is observed. For the analogous reaction with n‐butylamine, the pathway for the formation of the cine‐substitution product is kinetically less favorable than the pathway for the formation of a five‐membered ring species, but is much more thermodynamically favorable, again consistent with the experimental conversion of compound 8 into compound 6 , which is observed in an in situ NMR experiment with an isolated pure sample of 8 .  相似文献   

10.
The electrochemical reduction of a series of nickel porphyrins with an increasing number of substituents was investigated in acetonitrile. A one‐electron reduction of [5,15‐bis(1‐ethylpropyl)porphyrinato]nickel(II) leads to π‐anion radicals and to efficient formation of phlorin anions, presumably by disproportionation and subsequent protonation of the doubly reduced species. The phlorin anion was identified by using cyclic voltammetry and UV/Vis and resonance Raman spectroelectrochemistry, complemented by quantum‐chemical calculations to assign the spectral signatures. The theoretical analysis of the potential‐energy landscape of the singly reduced species suggests a thermally activated intersystem crossing that populates the quartet state and thus lowers the energy barrier towards disproportionation channels. Structure–reactivity correlations are investigated by considering different substitution patterns of the investigated nickel(II) porphyrin cores, that is, for the porphyrin with additional β‐aryl ([5,15‐bis(1‐ethylpropyl)‐2,8,12,18‐tetra(p‐tolyl)porphyrinato]nickel(II)) and meso‐alkyl substitution ([5,10,15,20‐tetrakis(1‐ethylpropyl)porphyrinato]nickel(II)), no phlorin anion formation was observed under electrochemical conditions. This observation is correlated either to kinetic inhibition of the disproportionation reaction or to lower reactivity of the subsequently formed doubly reduced species towards protonation.  相似文献   

11.
The aldol‐crotonic condensation reactions of N‐alkyl‐ and NH‐piperidin‐4‐one derivatives with (hetero)aromatic aldehydes promoted by Lewis acids or bases were examined. This comparative study has revealed three effective catalytic systems based on Lewis acids, i.e., LiClO4 and MgBr2 (in the presence of tertiary amine), and BF3⋅Et2O, for the synthesis of N‐alkyl‐substituted 3,5‐bis(heteroarylidene)piperidin‐4‐ones, including those bearing acid‐ or base‐labile groups both in the (hetero)aromatic groups and in the alkyl substituent at the N‐atom. The highest reaction rate was observed for LiClO4‐mediated synthesis. Both MgBr2‐ and LiClO4‐mediated syntheses were inefficient in the case of NH‐piperidin‐4‐one, while BF3⋅Et2O provided the final compounds in high yields. This catalyst is especially advantageous as it allows simultaneous condensation and deprotection in the case of O‐protected piperidin‐4‐one.  相似文献   

12.
The radical adducts resulting from the reaction between group IVB organometallic radicals MR3 (M = Si, Ge, Sn; R = alkyl or aryl) and a number of thioketones of the chromone and flavone series have been investigated by ESR spectroscopy. The spectral parameters obtained for these species have been compared with those of similar adducts of the corresponding ketones. Both classes of radicals adopt an orthogonal conformation, and the differences between the former and the latter paramagnetic species can be accounted for by the different electronegativity of oxygen and sulphur. the effects of substitution of the heterocyclic oxygen with a sulphur or selenium atom on the spin density distribution are likewise explained. INDO calculations have been carried out on the model systems CH2XSiH3 (X = O, S).  相似文献   

13.
A series of stable organosuperbases, N‐alkyl‐ and N‐aryl‐1,3‐dialkyl‐4,5‐dimethylimidazol‐2‐ylidene amines, were efficiently synthesized from N,N′‐dialkylthioureas and 3‐hydroxy‐2‐butanone and their basicities were measured in acetonitrile. The derivatives with tert‐alkyl groups on the imino nitrogen were found to be more basic than the tBu P1 (pyrr) phosphazene base in acetonitrile. The origin of the high basicity of these compounds is discussed. In acetonitrile and in the gas phase, the basicity of the alkylimino derivatives depends on the size of the substituent at the imino group, which influences the degree of aromatization of the imidazole ring, as measured by 13C NMR chemical shifts or by the calculated ΔNICS(1) aromaticity parameters, as well as on solvation effects. If a wider range of imino‐substituents, including electron‐acceptor substituents, is treated in the analysis then the influence of aromatization is less predominant and the gas‐phase basicity becomes more dependent on the field‐inductive effect, polarizability, and resonance effects of the substituent.  相似文献   

14.
An iron‐catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis‐1,2‐diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron‐catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates.  相似文献   

15.
Two new bridged alkoxysilanes, bis(triethoxysilylalkyl)‐N,N′‐oxalylureas (alkyl = methyl or n‐propyl), bearing a highly rigid and polar oxalylurea unit in the bridges, were employed as precursors of bridged silica membranes. The gas and water separation performance of the membranes prepared from the precursors using the sol–gel process was investigated. Interestingly, the membrane properties depended on the alkyl chain length. The membrane containing methylene units (alkyl = methyl) was porous and rather hydrophilic but the other with longer propylene units (alkyl = n‐propyl) was non‐porous and more hydrophobic. High H2/SF6 gas permeance ratios of 3100 and 1700, and NaCl rejections of 89 and 85% for 2000 ppm aqueous NaCl were obtained using the membranes containing methyl and n‐propyl, respectively. The membrane with alkyl = methyl also showed a high CO2/N2 permeance ratio of 20.6 at 50°C. These results indicate the potential applications of the membranes as gas and water separation materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A general and efficient method for the synthesis of cyclic sulfinates and sulfinamides based on intramolecular homolytic substitution (SHi) at the sulfur atom by aryl or alkyl radicals is described. Both alkyl and benzofused compounds can be accessed directly from easily prepared acyclic precursors. Enantiomerically enriched sulfur‐based heterocycles were formed through an SHi process with inversion of configuration at the sulfur atom. Cyclization of prochiral radicals proceeded with varying stereochemical outcomes, depending on the size of the incoming radical. 2‐Pyridyl and 2‐quinolyl radicals led to biaryl compounds, which result from attack onto the ortho position of the arylsulfinate rather than a thiophilic substitution.  相似文献   

17.
A highly regioselective ortho‐benzoxylation of N‐alkyl benzamides with aromatic acids in the presence of [{RuCl2(p‐cymene)}2], AgSbF6, and (NH4)2S2O8 in 1,2‐dichloroethane at 100 °C for 24 h affording ortho‐benzoxylated N‐alkyl benzamides by C?H bond activation is described. Further, Ru‐catalyzed alkenylation is done at the ortho C?H bond of benzoxylated N‐alkyl benzamides with alkenes in water solvent. Subsequently, the benzoxyl moiety of N‐alkyl benzamides was converted into a hydroxyl group in the presence of base or acid. A possible reaction mechanism was proposed to account for the present coupling reaction.  相似文献   

18.
A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac‐Ir(ppy)3‐catalyzed radical aminocarbonylation protocol has been developed. Using a two‐chambered system, alkyl iodides, fac‐Ir(ppy)3, amines, reductants, and CO gas (released ex situ from Mo(CO)6), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields.  相似文献   

19.
Generally considered kinetic intermediates in addition reactions of alkyllithiums to pyridine, 1‐lithio‐2‐alkyl‐1,2‐dihydropyridines have been rarely isolated or characterized. This study develops their “isolated” chemistry. By a unique stoichiometric (that is, 1:1, alkyllithium/pyridine ratios) synthetic approach using tridentate donors we show it is possible to stabilize and hence crystallize monomeric complexes where alkyl is tert‐butyl. Theoretical calculations probing the donor‐free parent tert‐butyl species reveal 12 energetically similar stereoisomers in two distinct cyclotrimeric (LiN)3 conformations. NMR spectroscopy studies (including DOSY spectra) and thermal volatility analysis compare new sec‐butyl and iso‐butyl isomers showing the former is a hexane soluble efficient hydrolithiation agent converting benzophenone to lithium diphenylmethoxide. Emphasizing the criticalness of stoichiometry, reaction of nBuLi/Me6TREN with two equivalents of pyridine results in non‐alkylated 1‐lithio‐1,4‐dihydropyridine?Me6TREN and 2‐n‐butylpyridine, implying mechanistically the kinetic 1,2‐n‐butyl intermediate hydrolithiates the second pyridine.  相似文献   

20.
We report the synthesis of three new complexes related to the achiral [Ru(tpm)(dppz)py]2+ cation (tpm=tripyridazole methane, dppz=dipyrido[3,2‐a:2′,3′‐c]phenazine, py=pyridine) that contain an additional single functional group on the monodentate ancillary pyridyl ligand. Computational calculations indicate that the coordinated pyridyl rings are in a fixed orientation parallel to the dppz axis, and that the electrostatic properties of the complexes are very similar. DNA binding studies on the new complexes reveal that the nature and positioning of the functional group has a profound effect on the binding mode and affinity of these complexes. To explore the molecular and structural basis of these effects, circular dichroism and NMR studies on [Ru(tpm)(dppz)py]Cl2 with the octanucleotides d(AGAGCTCT)2 and d(CGAGCTCG)2, were carried out. These studies demonstrate that the dppz ligand intercalates into the G2–A3 step, with {Ru(tpm)py} in the minor groove. They also reveal that the complex intercalates into the binding site in two possible orientations with the pyridyl ligand of the major conformer making close contact with terminal base pairs. We conclude that substitution at the 2‐ or 3‐position of the pyridine ring has little effect on binding, but that substitution at the 4‐position drastically disrupts intercalative binding, particularly with a 4‐amino substituent, because of steric and electronic interactions with the DNA. These results indicate that complexes derived from these systems have the potential to function as sequence‐specific light‐switch systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号