首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of heat capacity C p(T) was studied for nine rare-earth hexaborides MB6(M=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) at temperatures of 5–300 K. Using the correspondence principle for lattice heat capacities of isostructural compounds, the lattice contribution C 1(T) and the excess contribution ΔC(T) to the heat capacity of the hexaborides were determined. The lattice heat capacity C 1(T) is represented as the sum of the Debye contributions of the metal and boron sublattices: C 1(T)=C M (T)+6C B(T). The Debye temperatures πM and πB of the metal and boron sublattices were determined. The anomalies in the excess heat capacity ΔC(T)=C p (T)?C 1(T) are related to the magnetic ordering effects, the Schottky contribution, and the Jahn-Teller effect.  相似文献   

2.
We have studied experimentally the electrical conductivity and specific heat near the superconducting transition of granular samples of YBa2Cu3O7−δ, YBa2(Cu2.98Zn0.02)O7−δ and GdBa2Cu3O7−δ. The results show that the transition proceeds in two stages. Careful analysis of the conductivity in the regime of approach to the zero resistance state reveals the occurrence of a coherence transition, which is related to the connective nature of the granular samples. This transition occurs when the fluctuating phases of the order parameter in individual grains become long-range ordered. We obtain the exponent for fluctuation conductivity and the relevant critical temperature, Tco, which is close to the point where resistivity vanishes. The specific heat results, when analyzed as dC/dT, show a weak but reproducible cusp-like anomaly at Tco. This finding gives strong support to the interpretation of the coherence transition as a genuine critical phenomenon.  相似文献   

3.
We study the superconducting transition temperature (Tc) and the Peierls instability temperature (Tp) using Eliashberg type equations for both Tc and Tp self consistently with finite interchain coupling. We show that Tc > Tp below a critical electron-phonon coupling constant which depends on the bare phonon frequency. This determines an upper bound on Tc so that for higher transition temperatures Tp > Tc and superconductivity is unlikely. Higher values of Tc are possible if the interchain coupling is increased above a critical value where the Peierls instability is suppressed.  相似文献   

4.
The Fe‐doped system Cu0.9Ge0.9Fe0.2O3 has been investigated by means of X‐ray diffractometry, Mössbauer spectroscopy and superconducting quantum interference device. The structure of this system is orthorhombic and the lattice constants are a=4.784 Å, b=8.472 Å and c=2.904 Å, respectively. Magnetic measurements confirm that the spin‐Peierls transition appears in our sample at about 12 K, which is near to the spin‐Peierls transition temperature (T sp) 14 K of pure CuGeO3 system. The Mössbauer spectrum shows the superposition of two Zeeman sextets and a broad central line due to Fe3+ ions from room temperature to 4.2 K. The Mössbauer parameters show a discontinuity near T sp. The jump of the magnetic hyperfine field at temperatures lower than T sp means increasing of the superexchange interaction among the magnetic ions. The jump of the quadrupole splitting and the isomer shift values could be interpreted as due to decrement in symmetry of lattice sites and spontaneous thermal contraction.  相似文献   

5.
Polycrystalline samples of a new rare-earth series RPd5Al2 crystallizing in the tetragonal ZrNi2Al5-type structure have been prepared. Their physical properties by electrical resistivity ρ, magnetic susceptibility χ, magnetization M and specific heat Cp measurements are reported. The ingots are composed of elongated grains preferentially aligned in the c direction; therefore, measurements were conducted parallel and perpendicular to the grains. Antiferromagnetic ordering appears in R=Ce, Nd, Gd, and Sm at low temperatures. CePd5Al2 has two AFM transitions at 4.1 and 2.9 K and ρ(T) indicates a Kondo metal behavior with large anisotropy. In PrPd5Al2 no magnetic transition was observed down to 0.4 K. The Cp(T) shows a broad peak around 13 K due to the CEF effect, suggesting a non-magnetic singlet ground state. In NdPd5Al2, χ(T) shows anisotropy and the Cp(T) shows a sharp peak at 1.2 K. The magnetic entropy at 3 K is very close to Rln2, indicating a Kramers doublet ground state. In SmPd5Al2, Cp(T) shows a magnetic transition at 1.7 K. Cp(T) for GdPd5Al2 shows a peak at 6 K, followed by a broad anomaly around 3 K. Within this series, TN's for CePd5Al2 and NdPd5Al2 clearly deviate from the relation predicted by de Gennes scaling, which is ascribed to the CEF effect.  相似文献   

6.
The effect of hydrostatic pressure p on the low-frequency dielectric constant ? has been investigated for selected cyanides (NaCN, KCN) and cyanospinels [K2M(CN)4 with M = Zn, Cd, Hg and Rb2Zn(CN)4] for pressures up to 7 kbar In the low-pressure region (decreases monotomcally resulting in negative first-order pressure denvatives of the dielectric constant The second- and third-order pressure derivatives, however, proved to be positive in most cases Using the dielectric constant as a very sensitive probe we observed phase transitions from the cubic low-pressure phase to an orthorhombic (NaCN) resp trigonal (cyanospinels) high-pressure phase at the following transition pressures (for 293.2 K) 2 260 kbar for NaCN, 1 438 kbar for K2Hg(CN)4, 2 660 kbar for K2Cd(CN)4, 3 318 kbar for K2Zn(CN)4 and 0.690 kbar for Rb2Zn(CN)4 The transition temperature Tc, was found to increase strictly linear with pressure between 290 and 340 K at a rate of dTc/dp = 120 2 and 105 3 Kkbar?1 for K2Zn(CN)4 and K2Cd(CN)4, respectively.  相似文献   

7.
For the Nd0.1La0.9Fe11.5Al1.5 compound, the fine structure of the magnetic transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) states has been studied carefully by means of magnetization (M) and heat capacity (Cp) measurements. Although a single phase with the cubic NaZn13-type structure (Fm3c) has been proved by the room temperature X-ray diffraction pattern, the phase transition has been clearly found to be a stepwise process in M(T) and Cp(T) curves under proper fields. Due to the strong competition between the FM order and AFM order, the characteristic is especially evident under low fields, weakens gradually with the increasing applied field and finally vanishes when the field is higher than 2 T. This multi-step magnetic transition results from the inhomogeneity of the sample, probably due to the inhomogeneous distribution of Nd atoms.  相似文献   

8.
The magnetic phase diagram of GdAg1?xZnx, an intermetallic solid solution of an antiferromagnet (GdAg: TN = 136 K) and a ferromagnet (GdZn: TC = 269 K), has been elaborated from magnetization measurements. The antiferromagnetic phase boundary TN(x) first passes a broad maximum meeting the ferromagnetic phase boundary TC(x) at x1 = 0.575 and T1 = 72 K, where four phases coexist. On approaching (x1, T1) along TN(x) the magnetization phenomena vanish. At x1 the phase transition still has ferromagnetic appearance but proceeds into a state without spontaneous magnetic moment. Two different ferromagnetic phases (F1, F2) and one ferrimagnetic phase (F3) occur in the composition intervals 0.69 < x1 <1, and 0.61 <x2 < 0.69 and 0.51 < x3 < 0.61. All phase transitions seem to be of second order except th e F1?F2 one at x = 0.69 which is of first order. This phase line meets the paramagnetic to ferromagnetic phase boundary TC(x) in a multicritical point with the coordinates xm = 0.69, Tm = 123 K.Six further mixed magnetic phases, M1, 2, ..., 6, are observed between x = 0.33 and 0.6 below the antiferromagnetic branch and exhibit irreversible thermodynamic properties, such as hysteresis, below about 40 K.Assuming local magnetic interactions only between nearest and next-nearest Gd neighbours, the TN(x) and TC(x) phase boundaries can be described fairly well by a simple model calculation using different exchange parameters for a few relevant distributions of Ag and Zn atoms.  相似文献   

9.
The specific heat of single phase YBa2Cu3O7-δ has been measured using non-adiabatic method between 4.2K and 120K. There is a specific heat anomaly Δc at 90K (about 3.2% of total specific heat) approximately, due to superconducting transition. From the measured value of ΔC and transition temperature Tc, the electronic density of state at Fermi level N(EF) and Sommerfeld parameter γ calculated are 2.55±0.30states/eV.Cu-atom and 2.77±0.30 mJ/mole.K2, respectively. The experimental result of N(EF) is consistent with that of the band calculation by Mattheiss. The Debye temperature above Tc in this material deduced from Debye function is about 340K. Below 20K, the relation C=γ'T+βT3 is satisfied. But the value of γ' is smaller. That means, most of the electrons have formed superconducting Cooper pairs which give no contribution to specific heat below 20K.  相似文献   

10.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

11.
The heat capacity of a [NH2(CH3)2]5Cd3Cl11 crystal was studied calorimetrically in the temperature interval 100–300 K. The C p (T) dependence indicates that, as the temperature is lowered, phase transitions occur at temperatures T 1 = 176.5 K and T 2 = 123.5 K. The thermodynamic characteristics of this crystal were determined. It is shown that the transition at T 2 = 123.5 K is an incommensurate-commensurate phase transformation and that the transition at T 1 = 176.5 K is a normal-incommensurate phase transition.  相似文献   

12.
祝可嘉  秦晓岿  陈鸿  吴翔 《物理学报》1993,42(10):1612-1616
测量了高聚物材料聚丁二烯的比热,发现在温度Tg=178K出现玻璃转变且转变点附近的比热与降温过程有关。在降温过程中,若控制样品在某一温度Twg等待时间tw,则升温比热测量表明,Tg处的比热跃变△cp存在明显的等待时间效应,即△cp随tw的增大而增大。在Tw=169K条件下,△cp(t< 关键词:  相似文献   

13.
Raman scattering measurements on the one-dimensional (1-D) blue bronze K0.3MoO3 are reported as function of temperature. At about 50 cm-1 a Raman line of Ag(A) symmetry was found with an anomalous temperature dependence. The line symmetry, the softening of the eigenfrequency and the apparent disappearing of the coupling constant at the critical temperature, allow us to assign this line to the amplitude mode of the CDW, predicted by the theory of the Peierls transition. A Peierls precursor at room temperature was also observed and is discussed.  相似文献   

14.
When electron states in carbon nanotubes are characterized by two-dimensional wave vectors with the components K 1 and K 2 along the nanotube circumference and cylindrical axis, respectively, then two such vectors symmetric about a M-point in the reciprocal space of graphene are shown to be related by the time-reversal operation. To each carbon nanotube there correspond five relevant M-points with the following coordinates: K 1(1) = N/2R, K 2(1)= 0; K 1(2) = M/2R, K 2(2)= −π/T; K 1(3)= (2NM)/2R, K 2(3)= π/T; K 1(4)= (M + N)/2R, K 2(4)= -π/T, and K 1(5)= (NM)/2R, K 2(5)= π/T, where M and N are the integers relating the chiral, C h , symmetry, R, and translational, T, vectors of the nanotube by N R = C h + M T, T = |T|, and R is the nanotube radius. The states at the edges of the one-dimensional Brillouin zone, which are symmetric about the M-points with K 2 = ±π/T, are shown to be degenerate due to the time-reversal symmetry.  相似文献   

15.
The temperature and pressure derivatives of the elastic constants of orthorhombic betaine borate, (CH3)3NCH2COO·H3BO3, have been determined by measuring temperature and stress induced shifts of resonance frequencies of thick plates at ca. 15 MHz in the range between 140 and 300 K and 0 and 3 kbar. The elastic ‘shear’ resistance c44 exhibits a value as low as 0.0492×1010Nm-2at 293 K. With decreasing temperature c44 approaches zero at ca. 142.5 K, indicating an acoustic soft mode behaviour connected with a ferroelastic phase transition. The softening of c44 is described in a good approximation by c44(T)p=0 =alogT/T0 with a=0.0663×1010Nm-2 and T0 = 139.5 K. Further, c44 decreases with increasing pressure according to the linear relation c44(p)T=293 K = 0.0492?0.184×10-4p (p in bar, c44 in 1010 Nm-2). All other elastic constants show a quite normal temperature and pressure dependence. At 293 K the transition is induced by a pressure of 2.65 kbar. The transition temperature Tc depends linearly on pressure according to Tc = 142.5+0.0568 p (pinbar, TcinK). Passing through the transition no discontinuous change of the lattice constants is observed. The three principal coefficients of thermal expansion and the pressure derivatives of the dielectric constants exhibit discontinuities at the transition. The transition is of strongly second order.  相似文献   

16.
In the present paper, we present thermal and electrical transport properties of pristine and co-doped samples of high temperature superconductors Gd0.95Pr0.05Ba2Cu2.94M0.06O7−δ. It is found that all the samples, except the Mn co-doped sample, show metallic behavior in the normal state. It is observed that the upper critical field has a correlation with the substituent site of the co-dopant. Thermal conductivity κ(T) of all the samples, except the one with Zn co-doping, exhibits a hump like structure around their respective transition temperatures. A negative sign of the measured thermo-power (S) in Gd-123 indicates that electron-like carriers dominate the heat transport in the pristine sample; whereas a sign reversal in S, as a consequence of the change of dominant carrier upon doping, is observed. Specific heat (CP) measurements show a jump around the transition temperature (TC) for the pristine sample, however, such a jump in CP is strongly suppressed for the doped samples.  相似文献   

17.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

18.
Nuclear relaxation studies of the spin-Peierls transition in TTF-BDT are presented. At low temperature, but above Tc, the results agree in magnitude, frequency dependence and temperature dependence with calculations based on the pseudofermion treatment of the S = 12, 1-D Heisenberg antiferromagnet. The sharp decrease in the rate below Tc reflects the continuous opening of a magnetic energy gap at the spin-Peierls transition.  相似文献   

19.
Differential scanning calorimetry has been used to study the influence of temperature on the heat capacity of synthesized vanadates Zn2V2O7, (Cu0.56Zn1.44)V2O7, and (Cu1.0Zn1.0)V2O7. It is found that dependences Cp = f(T) have extremes. The thermodynamic properties of Zn2V2O7 have been determined.  相似文献   

20.
The low field (Ha.c. ⋍ 0.05 Oe) and low frequency (15 Hz) a.c. susceptibility has been measured for the amorphous alloys RE40Y23Cu37, with RE = Gd, Tb, Dy, Ho, andEr. The susceptibility exhibits a cusp, characteristic of a spin-glass phase transition from paramagnetic state. Gd40Y23Cu37 seems to exhibit a mixed ferromagnetic-spin glass phase below 62.5 K. Using the Sherrington-Kirkpatrick mean field theory, we have determined, from the observed cusps, the temperature dependence of the Edwards-Anderson spin glass order parameter, the dependence, consistent with theory, being in the form q(T) = A(TSGT)β, with β ⋍ 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号