首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrogallic acid (PG) was used as a modeling carbon source in fabricating nano‐structured hollow carbon materials (HCMs) by a chemical vapor deposition (CVD) method. We found that non‐isothermal deposition can improve the integrity of the obtained HCMs. The different pyrolyzed species from PG under varied temperatures lead to the temperature‐dependent deposition yield, graphitization degree and morphology of the HCMs. HCMs including hollow spheres of varied sizes, cubic boxes with yolk‐shell structure, nanotubes, mesoporous particles and double‐shelled fibers, were prepared by using different templates, demonstrating the universality of this strategy. The carbon source has been extended to other plant polyphenols. The abundant and renewable solid precursors for CVD method endow this strategy excellent operation safety, improved storage and transportation convenience and low cost, and would boost the production of morphology‐ and size‐controlled HCMs and their applications in the fields such as water treatment, electrode materials, adsorbent, drug delivery, and so forth.  相似文献   

2.
Reactive polymer coatings were synthesized via chemical vapor deposition (CVD) polymerization process. These coatings decouple surface design from bulk properties of underlying materials and provide a facile and general route to support thiol‐ene and thiol‐yne reactions on a variety of substrate materials. Through the reported technique, surface functions can be activated through a simple design of thiol‐terminated molecules such as polyethylene glycols (PEGs) or peptides (GRGDYC), and the according biological functions were demonstrated in controlled and low‐fouling protein adsorptions as well as accurately manipulated cell attachments.  相似文献   

3.
We report a computational study on 3d transition‐metal (Cr, Mn, Fe, and Co) carbodiimides in Li‐ and Na‐ion batteries. The obtained cell voltages semi‐quantitatively fit the experiments, highlighting the practicality of PBE+U as an approach for modeling the conversion‐reaction mechanism of the FeNCN archetype with lithium and sodium. Also, the calculated voltage profiles agree satisfactorily with experiment both for full (Li‐ion battery) and partial (Na‐ion battery) discharge, even though experimental atomistic knowledge is missing up to now. Moreover, we rationalize the structural preference of intermediate ternaries and their characteristic lowering in the voltage profile using chemical‐bonding and Mulliken‐charge analysis. The formation of such ternary intermediates for the lithiation of FeNCN and the contribution of at least one ternary intermediate is also confirmed experimentally. This theoretical approach, aided by experimental findings, supports the atomistic exploration of electrode materials governed by conversion reactions.  相似文献   

4.
Theoretical‐computational modeling with an eye to explaining experimental observations in regard to a particular chemical phenomenon or process requires choices concerning essential degrees of freedom and types of interactions and the generation of a Boltzmann ensemble or trajectories of configurations. Depending on the degrees of freedom that are essential to the process of interest, for example, electronic or nuclear versus atomic, molecular or supra‐molecular, quantum‐ or classical‐mechanical equations of motion are to be used. In multi‐resolution simulation, various levels of resolution, for example, electronic, atomic, supra‐atomic or supra‐molecular, are combined in one model. This allows an enhancement of the computational efficiency, while maintaining sufficient detail with respect to particular degrees of freedom. The basic challenges and choices with respect to multi‐resolution modeling are reviewed and as an illustration the differential catalytic properties of two enzymes with similar folds but different substrates with respect to these substrates are explored using multi‐resolution simulation at the electronic, atomic and supra‐molecular levels of resolution.  相似文献   

5.
Polymers prepared by chemical vapor deposition (CVD) polymerization have found broad acceptance in research and industrial applications. However, their intrinsic lack of degradability has limited wider applicability in many areas, such as biomedical devices or regenerative medicine. Herein, we demonstrate, for the first time, a backbone‐degradable polymer directly synthesized via CVD. The CVD co‐polymerization of [2.2]para ‐cyclophanes with cyclic ketene acetals, specifically 5,6‐benzo‐2‐methylene‐1,3‐dioxepane (BMDO), results in well‐defined, hydrolytically degradable polymers, as confirmed by FTIR spectroscopy and ellipsometry. The degradation kinetics are dependent on the ratio of ketene acetals to [2.2]para ‐cyclophanes as well as the hydrophobicity of the films. These coatings address an unmet need in the biomedical polymer field, as they provide access to a wide range of reactive polymer coatings that combine interfacial multifunctionality with degradability.  相似文献   

6.
Significant progress in the development of efficient and fast algorithms for quantum chemical calculations has been made in the past two decades. The main focus has always been the desire to be able to treat ever larger molecules or molecular assemblies—especially linear and sublinear scaling techniques are devoted to the accomplishment of this goal. However, as many chemical reactions are rather local, they usually involve only a limited number of atoms so that models of about 200 (or even less) atoms embedded in a suitable environment are sufficient to study their mechanisms. Thus, the system size does not need to be enlarged, but remains constant for reactions of this type that can be described by less than 200 atoms. The question then arises how fast one can obtain the quantum chemical results. This question is not directly answered by linear‐scaling techniques. In fact, ideas such as haptic quantum chemistry (HQC) or interactive quantum chemistry require an immediate provision of quantum chemical information which demands the calculation of data in “real time.” In this perspective, we aim at a definition of real‐time quantum chemistry, explore its realm and eventually discuss applications in the field of HQC. For the latter, we elaborate whether a direct approach is possible by virtue of real‐time quantum chemistry. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The mechanism of the nitrene‐group transfer reaction from an organic azide to isonitrile catalyzed by a ZrIV d0 complex carrying a redox‐active ligand was studied by using quantum chemical molecular‐modeling methods. The key step of the reaction involves the two‐electron reduction of the azide moiety to release dinitrogen and provide the nitrene fragment, which is subsequently transferred to the isonitrile substrate. The reducing equivalents are supplied by the redox‐active bis(2‐iso‐propylamido‐4‐methoxyphenyl)‐amide ligand. The main focus of this work is on the mechanism of this redox reaction, in particular, two plausible mechanistic scenarios are considered: 1) the metal center may actively participate in the electron‐transfer process by first recruiting the electrons from the redox‐active ligand and becoming formally reduced in the process, followed by a classical metal‐based reduction of the azide reactant. 2) Alternatively, a non‐classical, direct ligand‐to‐ligand charge‐transfer process can be envisioned, in which no appreciable amount of electron density is accumulated at the metal center during the course of the reaction. Our calculations indicate that the non‐classical ligand‐to‐ligand charge‐transfer mechanism is much more favorable energetically. Utilizing a series of carefully constructed putative intermediates, both mechanistic scenarios were compared and contrasted to rationalize the preference for ligand‐to‐ligand charge‐transfer mechanism.  相似文献   

8.
9.
This work aims to investigate the influence of various electrode materials on the signal‐to‐noise ratio (SNR) of passive microelectrode arrays (MEAs) intended for use in neural interfaces. Noise reduction substantially improves the performance of systems which electrically interface with extracellular solutions. The MEAs are fabricated using gold, indium tin oxide (ITO), inkjet printed (IJP) graphene, and chemical vapor deposited (CVD) graphene. 3D‐printed Nylon reservoirs are adhered to glass substrates with identical MEA patterns and filled with neuronal cell culture media. To precisely control the electrode area and minimize the parasitic coupling of metal interconnects and solution, SU‐8 photoresist is patterned to expose only the area of the electrode to solution and cap the remainder of the sample. Voltage signals with varying amplitude and frequencies are applied to the solution using glass micropipettes, and the response is measured on an oscilloscope from a microprobe placed on the contact pad external to the reservoir. The time domain response signal is transformed into a frequency spectrum, and SNR is calculated. As the magnitude or the frequency of the input signal gets larger, a significantly increased signal‐to‐noise ratio was observed in CVD graphene MEAs compared to others. This result indicates that 2‐dimensional nanomaterials such as graphene can provide better signal integrity and potentially lead to improved performance in hybrid neural interface systems.  相似文献   

10.
A new strategy toward patterned polymer brushes combining the spatially controlled deposition of poly[(hydroxymethyl‐p‐xylylene)‐co‐(p‐xylylene)] ( 1 ) by chemical vapor deposition (CVD) polymerization of 4‐(hydroxymethyl)[2.2]paracyclophane and surface‐initiated ring‐opening polymerization was developed. Patterns of polymer brushes with thicknesses between 53 and 538 Å were created. The approach does not require photolithographic tools and has potential applicability to a wide range of different substrates, such as glasses, polymers, metals or composites.  相似文献   

11.
《Chemphyschem》2003,4(5):418-438
Active control of chemical reactions on a microscopic (molecular) level, that is, the selective breaking or making of chemical bonds, is an old dream. However, conventional control agents used in chemical synthesis are macroscopic variables such as temperature, pressure or concentration, which gives no direct access to the quantum‐mechanical reaction pathway. In quantum control, by contrast, molecular dynamics are guided with specifically designed light fields. Thus it is possible to efficiently and selectively reach user‐defined reaction channels. In the last years, experimental techniques were developed by which many breakthroughs in this field were achieved. Femtosecond laser pulses are manipulated in so‐called pulse shapers to generate electric field profiles which are specifically adapted to a given quantum system and control objective. The search for optimal fields is guided by an automated learning loop, which employs direct feedback from experimental output. Thereby quantum control over gas‐phase as well as liquid‐phase femtochemical processes has become possible. In this review, we first discuss the theoretical and experimental background for many of the recent experiments treated in the literature. Examples from our own research are then used to illustrate several fundamental and practical aspects in gas‐phase as well as liquid‐phase quantum control. Some additional technological applications and developments are also described, such as the automated optimization of the output from commercial femtosecond laser systems, or the control over the polarization state of light on an ultrashort timescale. The increasing number of successful implementations of adaptive learning techniques points at the great versatility of computer‐guided optimization methods. The general approach to active control of light–matter interaction has also applications in many other areas of modern physics and related disciplines.  相似文献   

12.
High‐molecular‐weight polysulfates are readily formed from aromatic bis(silyl ethers) and bis(fluorosulfates) in the presence of a base catalyst. The reaction is fast and proceeds well under neat conditions or in solvents, such as dimethyl formamide or N‐methylpyrrolidone, to provide the desired polymers in nearly quantitative yield. These polymers are more resistant to chemical degradation than their polycarbonate analogues and exhibit excellent mechanical, optical, and oxygen‐barrier properties.  相似文献   

13.
Mini‐generators based on locomotion of small objects have aroused widespread attention because of their potential application in powering small‐scale electronic devices. Although improvements have been made in the development of mini‐generators, there are still some key challenges such as low power output and energy conversion efficiency, which limit the potential application of mini‐generators. Herein, through integrating a superhydrophobic surface, chemical reaction and solenoid coil/magnet into a system, an innovative mini‐generator is designed, which can convert chemical energy into electrical energy through mechanical form. As a result, the energy conversion efficiency and output power are both three hundred times higher than previously reported results and can be applied to power light‐emitting diodes without amplification. We believe that the proposed mini‐generator provides more chance for the application of self‐supplying power sources for electronic devices.  相似文献   

14.
Transition‐metal‐catalyzed carbon–carbon and carbon–heteroatom bond formations are among the most heavily used types of reactions in both academic and industrial settings. As important as these are to the synthetic community, such cross‐couplings come with a heavy price to our environment, and sustainability. E Factors are one measure of waste created, and organic solvents, by far, are the main contributors to the high values associated, in particular, with the pharmaceutical and fine‐chemical companies which utilize these reactions. An alternative to organic solvents in which cross‐couplings are run can be found in the form of micellar catalysis, wherein nanoparticles composed of newly introduced designer surfactants enable the same cross‐couplings, albeit in water, with most taking place at room temperature. In the absence of an organic solvent as the reaction medium, organic waste and hence, E Factors, drop dramatically.  相似文献   

15.
Utilizing pure amine hydrogen bonding is a novel approach for constructing two‐dimensional (2D) networks. Further, such systems are capable of undergoing structural modifications due to changes in pH. In this study, we designed a 2D network of triaminobenzene (TAB) molecules that by varying the pH from neutral to acidic, form either ordered or disordered structures on Au(111) surface as revealed in scanning tunneling microscopy images. In near‐neutral solution (pH ≈5.5), protonation of TAB generates charged species capable of forming H‐bonds between amine groups of neighboring molecules resulting in the formation of a 2D supramolecular structure on the electrified surface. At lower pH, due to the protonation of the amine groups, intermolecular hydrogen bonding is no longer possible and no ordered structure is observed on the surface. This opens the possibility to employ pH as a chemical trigger to induce a phase transition in the 2D molecular network of triaminobenzene molecules.  相似文献   

16.
Ab initio and hybrid density functional techniques were employed to characterize a surprising new class of H‐bonded complexes between ions of like charge. Representative H‐bonded complexes of both anion–anion and cation–cation type exhibit appreciable kinetic stability and the characteristic theoretical, structural, and spectroscopic signatures of hydrogen bonding, despite the powerful opposition of Coulomb electrostatic forces. All such “anti‐electrostatic” H‐bond (AEHB) species confirm the dominance of resonance‐type covalency (“charge transfer”) interactions over the inessential (secondary or opposing) “ionic” or “dipole–dipole” forces that are often presumed to be essential for numerical modeling or conceptual explanation of the H‐bonding phenomenon.  相似文献   

17.
《中国化学会会志》2018,65(6):674-680
The feasibility of ultrafast high‐resolution intermolecular multiple‐quantum coherence (UF‐iMQC) spectroscopy for the direct analysis of molecular‐mobility‐restricted samples that are not suitable for magic‐angle spinning, such as a jelly, hand soap, and marrow, is presented. Most components could be directly detected in their original state within 1 min without the need for tedious sample preparation processes. When we use conventional liquid nuclear magnetic resonance (NMR) method to study these systems, the spectral information could not be retrieved owing to the intrinsic inhomogeneous magnetic fields caused by sample inhomogeneity. In addition, the possibility for UF‐iMQC‐based quantifications is shown. The examples presented in this paper demonstrate the potential of UF iMQC NMR for food safety inspection, for quality testing of daily‐life supplies, or in assisting medical diagnosis.  相似文献   

18.
Hypoxia is an important contributing factor to the development of drug‐resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click‐assembled oxygen‐sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click‐based ligation of poly(amidoamine)‐like subunits for rapid assembly. Near‐infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof‐of‐concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth‐resolved imaging in tissue and tissue models.  相似文献   

19.
A selective dehydrogenative electrochemical functionalization of benzylic positions that employs 1,1,1,3,3,3‐hexafluoropropan‐2‐ol (HFIP) has been developed. The electrogenerated products are versatile intermediates for subsequent functionalizations as they act as masked benzylic cations that can be easily activated. Herein, we report a sustainable, scalable, and reagent‐ and metal‐free dehydrogenative formal benzyl–aryl cross‐coupling. Liberation of the benzylic cation was accomplished through the use of acid. Valuable diarylmethanes are accessible in the presence of aromatic nucleophiles. The direct application of electricity enables a safe and environmentally benign chemical transformation as oxidizers are replaced by electrons. A broad variety of different substrates and nucleophiles can be employed.  相似文献   

20.
Triangular zigzag nanographenes, such as triangulene and its π‐extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high‐spin networks with long‐range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on‐surface synthesis and a proof‐of‐principle experimental study of magnetism in covalently bonded triangulene dimers. On‐surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4‐phenylene spacer. The chemical structures of the dimers have been characterized by bond‐resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet–triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号