首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excited-state reaction paths and energy profiles of 5,6-dihydroxyindole (DHI), one of the elementary building blocks of eumelanin, have been determined with the approximated singles-and-doubles coupled-cluster (CC2) method. 6-Hydroxy-4-dihydro-indol-5-one (HHI) is identified as a photochromic species, which is formed via nonadiabatic hydrogen migration from the dangling OH group of DHI to the neighboring carbon atom of the six-membered ring. It is shown that HHI is a typical excited-state hydrogen-transfer (ESIHT) system. HHI absorbs strongly in the visible range of the spectrum. A barrierless hydrogen transfer in the (1)pipi* excited state, followed by barrierless torsion of the hydroxyl group, lead to a low-lying S(1)-S(0) conical intersection and thus to ultrafast internal conversion. This very efficient mechanism of excited-state deactivation provides HHI with a high degree of intrinsic photostability. It is suggested that the metastable photochemical product HHI plays an essential role for the photoprotective biological function of eumelanin.  相似文献   

2.
3.
The electronic excited states of a meso-meso beta-beta doubly linked bis-porphyrin are comprehensively investigated by measuring its circular dichroism (CD) and magnetic circular dichroism (MCD) spectra. The observed spectroscopic properties are rationalized by DFT calculations. The frontier molecular orbitals (MOs) are constructed by the linear combinations of the constituent monomers' four MOs. Comparison of a theoretical CD spectrum based on time-dependent DFT (TDDFT) with the experimental spectra resulted in the assignment of the helical conformation of the dimer. This assignment is contrary to the previous assignment based on the point-dipole approximation (exciton coupling theory).  相似文献   

4.
《Chemphyschem》2003,4(8):838-842
The vibronic spectrum of the adenine–thymine (A–T) base pair was obtained by one‐color resonant two‐photon ionization (R2PI) spectroscopy in a free jet of thermally evaporated A and T under conditions favorable for formation of small clusters. The onset of the spectrum at 35 064 cm?1 exhibits a large red shift relative to the π–π* origin of 9H‐adenine at 36 105 cm?1. The IR–UV spectrum was assigned to cluster structures with HNH???O?C/N???HN hydrogen bonding by comparison with the IR spectra of A and T monomers and with ab initio calculated vibrational spectra of the most stable A–T isomers. The Watson–Crick A–T base pair is not the most stable base‐pair structure at different levels of ab initio theory, and its vibrational spectrum is not in agreement with the observed experimental spectrum. Experiments with methylated A and T were performed to further support the structural assignment.  相似文献   

5.
The absorption properties of chromophores in biomolecular systems are subject to several fine‐tuning mechanisms. Specific interactions with the surrounding protein environment often lead to significant changes in the excitation energies, but bulk dielectric effects can also play an important role. Moreover, strong excitonic interactions can occur in systems with several chromophores at close distances. For interpretation purposes, it is often desirable to distinguish different types of environmental effects, such as geometrical, electrostatic, polarization, and response (or differential polarization) effects. Methods that can be applied for theoretical analyses of such effects are reviewed herein, ranging from continuum and point‐charge models to explicit quantum chemical subsystem methods for environmental effects. Connections to physical model theories are also outlined. Prototypical applications to optical spectra and excited states of fluorescent proteins, biomolecular photoreceptors, and photosynthetic protein complexes are discussed.  相似文献   

6.
7.
We present an integrated computational tool, rooted in density functional theory, the polarizable continuum model, and classical molecular dynamics employing spherical boundary conditions, to study the spectroscopic observables of molecules in solution. As a test case, a modified OPLS-AA force field has been developed and used to compute the UV and NMR spectra of acetone in aqueous solution. The results show that provided the classical force fields are carefully reparameterized and validated, the proposed approach is robust and effective, and can also be used by nonspecialists to provide a general and powerful complement to experimental techniques.  相似文献   

8.
Framework titanium atoms in titanium-substituted silicalite (TS-1) can be identified by UV resonance Raman spectroscopy since the associated Raman bands at 1125, 530, and 490 cm−1 (see figure) are observed only when the charge transfer transition associated with the framework Ti atoms is excited by a UV laser. Thus, framework Ti atoms can be distinguished from nonframework Ti atoms and other defect sites. This method can be applicable to identifying transition metal atoms in the frameworks of other molecular sieves.  相似文献   

9.
2-Pyridone (pyridin-2-one) is a mimic of the uracil and thymine nucleobases, with only one N--H and C==O group. It provides a single H-bonding site, compared to three for the canonical pyrimidine nucleobases. Employing the supersonically cooled 9-methyladenine2-pyridone (9MAd x 2PY) complex, which is the simplest base pair to mimic adenine-uracil or adenine-thymine, we show that its gas-phase UV spectrum consists of contributions from two isomers. Based on the H-bonding sites of 9-methyladenine, these are the Watson-Crick and Hoogsteen forms. Combining two-color two-photon ionisation (2C-R2PI), UV-UV depletion and laser-induced fluorescence spectroscopies allows separation of the two band systems, revealing characteristic intermolecular in-plane vibrations of the two isomers. The calculated S(0) and S(1) intermolecular frequencies are in good agreement with the experimental ones. Ab initio calculations predict the Watson-Crick isomer to be slightly more stable (D(0)=-16.0 kcal mol(-1)) than the Hoogsteen isomer (D(0)=-15.0 kcal mol(-1)). The calculated free energies Delta(f)G(0) of the Watson-Crick and Hoogsteen isomers agree qualitatively with the experimental isomer concentration ratio of 3:1.  相似文献   

10.
Herein, a Raman spectroscopic study of a new family of 2,5-di(2-thienyl)phospholes and thienyl-capped 1,1'-diphospholes is presented. The Raman spectra have been carefully assigned with the help of density functional calculations. For di(2-thienyl)phospholes, two well-differentiated groups of Raman bands exist that arise either from the central phosphole ring or from the outer thiophene substituents. These data reveal a segmentation of the electronic structure. This paper reports interesting relationships between geometrical data such as the BLA (bond-length alternation) parameter and Raman band wavenumbers. These correlations are unprecedented in the chemistry of phospholes and have been used to interpret the evolution of the electronic structure (aromaticity=pi-conjugation) upon 1) substitution of the central sulfur atom of terthiophene by phosphorus and 2) P-functionalization. Increasing the coordination number of the phosphole ring results in intramolecular charge transfer. The best scenario for phosphole aromaticity is found for 1,1'-diphospholes.  相似文献   

11.
12.
2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.  相似文献   

13.
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm?1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems.  相似文献   

14.
We report on the characterization of dibenzo[cde,opq]rubicene (C30H14). The molecule was studied in solution at room temperature with absorption spectroscopy in the visible (vis) and ultraviolet (UV) wavelength ranges, and with emission spectroscopy. The infrared (IR), visible, ultraviolet, and vacuum ultraviolet (VUV) absorption spectra of a thin film were measured also at room temperature. In addition, the UV/vis absorption spectrum was measured at cryogenic temperatures using the matrix isolation spectroscopy technique. The interpretation of spectra was supported by theoretical calculations based on semiempirical and ab initio models, as well as on density functional theory. Finally, the results of the laboratory study were compared with interstellar spectra.  相似文献   

15.
The conformations of dodecamethylcyclohexasilane Si6Me12 and undecamethylcyclohexasilane Si6Me11H have been investigated by ab initio calculations employing the B3LYP density functional with a 6-31+G(d) basis set. Local minima as well as transition structures were calculated with imposed symmetry constraints. For Si6Me12, three unique minima, which correspond to the chair, twist and boat conformations were located with relative zero-point-vibration-corrected energies of 0.0, 7.8 and 11.4 kJ mol(-1). A half-chair conformation with four coplanar silicon atoms connects the chair and twisted minima via an energy barrier of 16.0 and 8.2 kJ mol(-1), respectively. A second transition structure with a barrier of 3.9/0.3 kJ mol(-1) connects the twist with the boat structure. Solution Raman spectra of Si6(CH3)12 and Si6(CD3)12 fully corroborate these results. Below -40 degrees C, the symmetric SiSi ring breathing vibration is a single line, which develops a shoulder (originating from the twist conformer) at longer wavelengths whose intensity increases with increasing temperature. From a Van't Hoff plot, the chair/twist enthalpy difference is 6.6+/-1.5 kJ mol(-1) for Si6(CH3)12 and 6.0+/-1.5 kJ mol(-1) for Si6(CD3)12, which is in reasonable agreement with the ab initio results. Due to the low barrier, the boat conformation cannot be observed, because either the lowest torsional vibration level lies above it or a rapid interconversion between the twist and boat conformations occurs, resulting in averaged Raman spectra. For Si6Me11H, six local minima were located. The chair with the hydrogen atom in the axial position (axial chair) is the global minimum, followed by the equatorial chair (+1.9 kJ mol(-1)) and the three twist conformers (+5.3, +8.0 and +8.1 kJ mol(-1)). The highest local minimum (+11.9 kJ mol(-1)) is a C(s) symmetric boat with the hydrogen atom in the equatorial position. Two possible pathways for the chair-to-chair interconversion with barriers of 13.9 and 14.5 kJ mol(-1) have been investigated. The solution Raman spectra in the SiSi ring breathing region clearly show that below -50 degrees C only the axial and equatorial chairs are present, with an experimental deltaH-value of 0.46 kJ mol(-1). With increasing temperature a shoulder develops which is attributed to the combined twist conformers. The experimental deltaH-value is 6.9 kJ mol(-1), in good agreement with the ab initio results. Due to the low interconversion barriers, the various twist conformers cannot be detected separately.  相似文献   

16.
The intense absorption of light to covering a large part of the visible spectrum is highly desirable for solar energy conversion schemes. To this end, we have developed novel anionic bis(4H-imidazolato)Cu(I) complexes (cuprates), which feature intense, panchromatic light absorption properties throughout the visible spectrum and into the NIR region with extinction coefficients up to 28,000 M−1 cm−1. Steady-state absorption, (spectro)electrochemical and theoretical investigations reveal low energy (Vis to NIR) metal-to-ligand charge-transfer absorption bands, which are a consequence of destabilized copper-based donor states. These high-lying copper-based states are induced by the σ-donation of the chelating anionic ligands, which also feature low energy acceptor states. The optical properties are reflected in very low, copper-based oxidation potentials and three ligand-based reduction events. These electronic features reveal a new route to panchromatically absorbing Cu(I) complexes.  相似文献   

17.
In N-(2,5-di-tert-butylphenyl)-9-pyrrolidinoperylene-3,4-dicarboximide (5PI) the absorption and emission spectra display large solvatochromic shifts, but, remarkably, the Stokes shift is practically independent of solvent polarity. This unique behavior is caused by the extraordinarily large ground-state dipole moment of 5PI, which further increases upon increasing the solvent polarity, whereas the excited-state dipole moment is less solvent dependent. In the corresponding piperidine compound, 6PI, this effect is much less important owing to the weaker coupling between the amino group and the aromatic imide moiety, and in the corresponding naphthalimide, 5NI, it is absent. The latter shows the conventional solvatochromic behavior of a push-pull substituted conjugated system, that is, minor shifts in absorption and a larger change in the emission energy with solvent polarity.  相似文献   

18.
Raman and vibrational Raman optical activity (VROA) spectra of helical conformers of polypropylene chains are simulated using ab initio methods to unravel the relationships between the vibrational signatures and the primary and secondary structures of the chains. For a polypropylene chain containing three units, conformational effects are shown to lead to more acute signatures for VROA than for Raman spectra. In addition to regular polypropylene chains, which can display right and left helicities with the same probability, chirality and therefore helicity are enforced by substituting one chain end with a phenyl group. The simulations predict that the threefold helical structures, which correspond to (TG)(N) conformations of the backbone, have a specific VROA backward signature in the form of an intense couplet around 1100 cm(-1). This couplet is associated with collective wagging and twisting motions, while most of its intensity comes from the anisotropic invariants combining normal coordinate derivatives of the electric dipole-electric dipole polarizability and of the electric dipole-magnetic dipole polarizability. A similar signature has already been found in model helical polyethylene chains, whereas it is very weak in forward VROA.  相似文献   

19.
20.
Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2OO, with two inorganic acids, HCl and HNO3, both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2OO with HCl and HNO3 have rate constants of 4.6×10?11 cm3 s?1 and 5.4×10?10 cm3 s?1, respectively. Complementary quantum‐chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号