首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of adenosylcobalamin (B12 coenzyme, AdoCbl) has been calculated by a density functional method, using the orthogonalized linear combination of the atomic orbital method (OLCAO). Since a fixed accurately determined geometry was needed in such calculations, the crystal structure of adenosylcobalamin has been redone and refined to R = 0.065, using synchrotron diffraction data. Comparison with the recently reported electronic structures of cyano- (CNCbl) and methylcobalamin (MeCbl) shows that the net charges and bond orders vary only on the axial donors. The values in the three cobalamins suggest that the Co-C bond in MeCbl has a strength similar to that in AdoCbl, but it is significantly weaker that that in CNCbl. Present results are compared with those previously reported for the analogous corrin derivatives; i.e., simplified cobalamins with the side chains a-f replaced by H atoms. Despite a qualitative agreement, a discrepancy in the calculated HOMO-LUMO gap is found.  相似文献   

2.
The electronic structure of hydroxocobalamin (OHCbl) has been calculated by a density functional method, using the orthogonalized linear combination of the atomic orbitals method (OLCAO). The X-ray crystal structure has been determined from synchrotron X-ray diffraction data and the geometry determined was used in the calculations. Comparison with the recently reported electronic structures of cyanocobalamin (CNCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) shows that Mulliken charges (Q*) and bond orders (BO) vary only on the axial fragment.  相似文献   

3.
Femtosecond transient IR and visible absorption spectroscopies have been employed to investigate the excited-state photophysics of vitamin B12 (cyanocobalamin, CNCbl) and the related cob(III)alamins, azidocobalamin (N3Cbl), and aquocobalamin (H2OCbl). Excitation of CNCbl, H2OCbl, or N3Cbl results in rapid formation of a short-lived excited state followed by ground-state recovery on time scales ranging from a few picoseconds to a few tens of picoseconds. The lifetime of the intermediate state is influenced by the sigma-donating ability of the axial ligand, decreasing in the order CNCbl > N3Cbl > H2OCbl, and by the polarity of the solvent, decreasing with increasing solvent polarity. The peak of the excited-state visible absorption spectrum is shifted to ca. 490 nm, and the shape of the spectrum is characteristic of weak axial ligands, similar to those observed for cob(II)alamin, base-off cobalamins, or cobinamides. Transient IR spectra of the upper CN and N3 ligands are red-shifted 20-30 cm(-1) from the ground-state frequencies, consistent with a weakened Co-upper ligand bond. These results suggest that the transient intermediate state can be attributed to a corrin ring pi to Co 3d(z2) ligand to metal charge transfer (LMCT) state. In this state bonds between the cobalt and the axial ligands are weakened and lengthened with respect to the corresponding ground states.  相似文献   

4.
5.
The accurate crystal structure determinations of MeCbl (1), CNCbl.2LiCl (2), and CNCbl.KCl (3), based on synchrotron diffraction data collected at 100 K and using high-quality single crystals, are reported. Refinements gave R1 indices of 0.0834 (1), 0.0434 (2), and 0.0773 (3). The influence of the water of crystallization and ion content on the crystal packing of these and other cobalamins (XCbl) is discussed, and a relationship between the crystal packing and the corrin side chain conformations is presented. An analysis of the bond lengths within the corrin moiety, based on 13 accurate structures with several X groups, shows that the trend of the C-C and C-N distances can be interpreted in terms of electronic and steric factors. The variation in structural, NMR and IR spectroscopic, and electrochemical properties are compared with those of cobaloximes, the B12 model, when X is varied. This comparison indicates that the pi-back-donation from metal to the CN axial ligand and the transmission of the trans influence of the X ligand are more effective in cobalamins than in cobaloximes. These findings are consistent with a significantly greater availability of electron charge on Co in cobalamins, and, hence, a semiquantitative evaluation of the electronic difference between the cobalt centers in the two systems is allowed.  相似文献   

6.
Transient absorption spectroscopy has been used to elucidate the nature of the S1 intermediate state populated following excitation of cob(III)alamin (Cbl(III)) compounds. This state is sensitive both to axial ligation and to solvent polarity. The excited-state lifetime as a function of temperature and solvent environment is used to separate the dynamic and electrostatic influence of the solvent. Two distinct types of excited states are identified, both assigned to pi3d configurations. The spectra of both types of excited states are characterized by a red absorption band (ca. 600 nm) assigned to Co 3d --> 3d or Co 3d --> corrin pi* transitions and by visible absorption bands similar to the corrin pi-->pi* transitions observed for ground state Cbl(III) compounds. The excited state observed following excitation of nonalkyl Cbl(III) compounds has an excited-state spectrum characteristic of Cbl(III) molecules with a weakened bond to the axial ligand (Type I). A similar excited-state spectrum is observed for adenosylcobalamin (AdoCbl) in water and ethylene glycol. The excited-state spectrum of methyl, ethyl, and n-propylcobalamin is characteristic of a Cbl(III) species with a sigma-donating alkyl anion ligand (Type II). This Type II excited-state spectrum is also observed for AdoCbl bound to glutamate mutase. The results are discussed in the context of theoretical calculations of Cbl(III) species reported in the literature and highlight the need for additional calculations exploring the influence of the alkyl ligand on the electronic structure of cobalamins.  相似文献   

7.
We report the first observation of quadrupole-central-transition (QCT) 59Co (I=7/2) NMR signals from three cobalamin (Cbl) compounds (CNCbl, MeCbl, and AdoCbl) dissolved in glycerol/water. Measurements were performed at four magnetic fields ranging from 11.7 to 21.1 T. We found that the 59Co QCT signals observed for cobalamin compounds in the slow motion regime (ω0τC≫1) are significantly narrower than those observed from their aqueous solutions where the molecular tumbling is near the condition of ω0τC≈1. We demonstrated that an analysis of 59Co QCT signals recorded over different temperatures and at multiple magnetic fields allowed determination of both the 59Co quadrupole coupling constant and chemical shift anisotropy for each of the three cobalamins. We successfully applied the 59Co QCT NMR approach to monitor in situ the transformation of CNCbl to its “base off” form in the presence of KCN. We further discovered that, to obtain the maximum QCT signal intensity with the Hahn-echo sequence, a strong B1 field should be used for the first 90° pulse, but a weak B1 field for the second 180° pulse. The reported 59Co QCT NMR methodology opens up a new direction for studying structure and function of cobalamin compounds and their roles in biological processes.  相似文献   

8.
Vitamin B(12) (cyanocobalamin) and its biologically active derivatives, methylcobalamin and adenosylcobalamin, are members of the family of corrinoids, which also includes cobinamides. As biological precursors to cobalamins, cobinamides possess the same structural core, consisting of a low-spin Co(3+) ion that is ligated equatorially by the four nitrogens of a highly substituted tetrapyrrole macrocycle (the corrin ring), but differ with respect to the lower axial ligation. Specifically, cobinamides possess a water molecule instead of the nucleotide loop that coordinates axially to Co(3+)cobalamins via its dimethylbenzimidazole (DMB) base. Compared to the cobalamin species, cobinamides have proven much more difficult to study experimentally, thus far eluding characterization by X-ray crystallography. In this study, we have utilized combined quantum mechanics/molecular mechanics (QM/MM) computations to generate complete structural models of a representative set of cobinamide species with varying upper axial ligands. To validate the use of this approach, analogous QM/MM geometry optimizations were carried out on entire models of the cobalamin counterparts for which high-resolution X-ray structural data are available. The accuracy of the cobinamide structures was assessed further by comparing electronic absorption spectra computed using time-dependent density functional theory to those obtained experimentally. Collectively, the results obtained in this study indicate that the DMB → H(2)O lower axial ligand switch primarily affects the energies of the Co 3d(z(2))-based molecular orbital (MO) and, to a lesser extent, the other Co 3d-based MOs as well as the corrin π-based highest energy MO. Thus, while the energy of the lowest-energy electronic transition of cobalamins changes considerably as a function of the upper axial ligand, it is nearly invariant for the cobinamides.  相似文献   

9.
The solution structure of coenzyme B12 (5′-deoxyadenosylcobalamin, AdoCbl) and the corresponding cobinamide, AdoCbi+, in which the axial nucleotide has been chemically removed, have been investigated using NMR-restrained molecular dynamics (MD) and simulated annealing (SA) calculations. The nOe cross peaks in the ROESY spectrum of both AdoCbl and AdoCbi+ are consistent with the presence of at least two principal conformations for each compound in solution. In the first, termed the southern conformation, the adenosyl (Ado) ligand is over the C ring of the molecule, the structure observed in the solid state. In the second, the Ado ligand has undergone an anticlockwise rotation and is over C10 in the eastern quadrant of the molecule. A two-state MD/SA simulation was used omitting nOes that arise only from the eastern conformation and that arise only from the southern conformation, respectively. Consensus structures were obtained by averaging the coordinates of 25 annealed structures of the southern and eastern conformations, respectively, of AdoCbl and AdoCbi+, followed by energy minimization. The consensus structure of the southern conformation of AdoCbl agrees well with the solid-state structure and has a very similar corrin fold angle. Several observations show that AdoCbl is considerably more rigid than AdoCbi+, and indeed is one of the most rigid cobalt corrinoids studied by these methods to date: the variability in the conformations of the corrin ring between the family of 25 annealed structure and the consensus structure is much smaller for AdoCbl than for AdoCbi+; during MD simulations, the previously demonstrated flexibility of the corrin ring as gauged by the corrin ruf angle (C5–Co–C15) is preserved for AdoCbi+ but is considerably diminished in AdoCbl because of a decrease in the maximum fold angle and an increase in the minimum fold angle achieved in the latter; the range of values of the Co–C bond length experienced in AdoCbi+ is substantially larger than in AdoCbl; the Ado ligand visits many more orientations relative to the corrin ring in AdoCbi+ than in AdoCbl; the pyrrole rings in AdoCbl undergo smaller deformations than in AdoCbi+; and the “breathing motion” of the corrin ring in which C5, C10 and C15 oscillate from above to below the mean corrin plane is much less pronounced in AdoCbl than in AdoCbi+. This rigidity is attributed to the presence of two bulky ligands in AdoCbl, the Ado ligand in the upper (β) axial position and the 5,6-dimethylbenzimidazole (bzm) ligand in the lower () axial ligand position, in contrast to the other structures which have only one or other of these two bulky ligands. The corrin fold angle in AdoCbl is significantly larger than that in AdoCbi+, a finding that is in agreement with a previous observation that CH3Cbl has a larger fold angle than CH3Cbi+; this implies that base-on corrins are under steric strain.  相似文献   

10.
In the course of experiments concerning our ongoing project on the synthesis of vitamin B(12) (cyanocobalamin, CNCbl) bioconjugates for drug-delivery purposes, we observed the formation of well-shaped red parallelepipeds from a concentrated aqueous solution of the HPLC-purified vitamin. The X-ray structural investigation (MoK(α)) at 98 K on these crystals revealed a CNCbl-TFA salt of formula [CNCbl(H)](TFAc)·14H(2)O (1, where TFA = trifluoracetic acid; TFAc(-) = trifluoracetate anion), in which a proton transfer from the trifluoracetic acid to the phosphate-O4P oxygen atoms is observed. 1 crystallizes in the standard orthorhombic P2(1)2(1)2(1) space group, a = 16.069(2) ?, b = 20.818(2) ?, c = 24.081(2) ?, Z = 4. The final full-matrix least-squares refinements on F(2) converged with R(1) = 4.1% for the 18957 significant reflections, a very low crystallographic residual for cobalamins, which facilitated the analysis of the extensive network of hydrogen bonds within the lattice. To the best of our knowledge, this is the first cobalamin structure to show protonation of the phosphate group of the cobalamin nucleotide loop. In this work, the crystal structure of 1 is analyzed and compared to other CNCbls reported in the literature, namely, CNCbl·3PrOH·12H(2)O (2, PrOH = propyl alcohol), CNCbl·acetone·20H(2)O (3), CNCbl·2LiCl·10.2H(2)O (4), and CNCbl·2KCl·10.6H(2)O (5). The analysis confirmed that protonation of the phosphate leaves the major CNCbl structural parameters unaffected, so that 1 can be considered an "unmodified" Cbl solvate. However, comparison between 1-5 led to interesting findings. In fact, although the cobalt(III) coordination sphere in 1-5 is similar, significant differences could be noted in the upward fold angle of the corrin macrocycle, a parameter commonly related to the steric hindrance of the axial lower "α" nucleotide-base and the electronic trans influence of the upper "β" substituent. This suggests that crystal-packing forces may influence the corrin deformation as well. Herein we explore, on the basis of the newly acquired structure and reported crystallographic data, whether the incongruities among 1-5 have to be attributed to random crystal packing effects or if it is possible to associate them with specific crystal packing (clusters).  相似文献   

11.
Recent X-ray crystal structure determinations (including a new X-ray determination of the structure of cyano-13-epicobalamin reported herein) create a series of seven base-on cobalamins structurally characterized by modern crystallographic techniques in which the intramolecular equilibrium constant for coordination of the axial benzimidazole ligand (Bzm) varies from 76.6 to 4.90 x 10(7). For the five normal, unepimerized cobalamins, the free energy change for this equilibrium correlates linearly with the axial Co-N bond length (r(2) = 0.99). Absolute assignment of the (1)H and (13)C NMR spectra of two of these structurally characterized cobalamins (CH(3)Cbl and CN-13-epiCbl) together with literature assignments for the other complexes now provides reliable (13)C NMR assignments and chemical shifts for all seven complexes. The magnetic anisotropies of the central cobalt atom of all seven complexes, estimated by a method described earlier, are well correlated with the axial Co-N bond distance (r(2) = 0.97) and the free energy of coordination of the Bzm ligand (r(2) = 0.95). The (31)P NMR chemical shift of the phosphodiester moiety of the nucleotide loop is excellently correlated to the axial Co-N bond length (r(2) = 0.996) of the unepimerized cobalamins and provides a reliable method of estimating this bond length. The (15)N chemical shifts of the axially coordinated Bzm nitrogen vary strongly with the axial Co-N bond distance and correlate linearly with this structural parameter (r(2) = 0.991) except for the case of H(2)OCbl(+), which deviates substantially. However, there is a good linear correlation (r(2) = 0.98) of this (15)N chemical shift with the free energy of Bzm coordination for the five unepimerized cobalamins. Attempts to correlate (13)C NMR chemical shifts with structural, thermodynamic, and corrin ring conformational parameters are discussed.  相似文献   

12.
The PduO-type adenosine 5'-triphosphate (ATP):corrinoid adenosyltransferase from Lactobacillus reuteri (LrPduO) catalyzes the transfer of the adenosyl-group of ATP to Co(1+)cobalamin (Cbl) and Co(1+)cobinamide (Cbi) substrates to synthesize adenosylcobalamin (AdoCbl) and adenosylcobinamide (AdoCbi(+)), respectively. Previous studies revealed that to overcome the thermodynamically challenging Co(2+) → Co(1+) reduction, the enzyme drastically weakens the axial ligand-Co(2+) bond so as to generate effectively four-coordinate (4c) Co(2+)corrinoid species. To explore how LrPduO generates these unusual 4c species, we have used magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectroscopic techniques. The effects of active-site amino acid substitutions on the relative yield of formation of 4c Co(2+)corrinoid species were examined by performing eight single-amino acid substitutions at seven residues that are involved in ATP-binding, an intersubunit salt bridge, and the hydrophobic region surrounding the bound corrin ring. A quantitative analysis of our MCD and EPR spectra indicates that the entire hydrophobic pocket below the corrin ring, and not just residue F112, is critical for the removal of the axial ligand from the cobalt center of the Co(2+)corrinoids. Our data also show that a higher level of coordination among several LrPduO amino acid residues is required to exclude the dimethylbenzimidazole moiety of Co(II)Cbl from the active site than to remove the water molecule from Co(II)Cbi(+). Thus, the hydrophilic interactions around and above the corrin ring are more critical to form 4c Co(II)Cbl than 4c Co(II)Cbi(+). Finally, when ATP analogues were used as cosubstrate, only "unactivated" five-coordinate (5c) Co(II)Cbl was observed, disclosing an unexpectedly large role of the ATP-induced active-site conformational changes with respect to the formation of 4c Co(II)Cbl. Collectively, our results indicate that the level of control exerted by LrPduO over the timing for the formation of the 4c Co(2+)corrinoid intermediates is even more exquisite than previously anticipated.  相似文献   

13.
The relevant excited states involved in the photolysis of methylcobalamin (MeCbl) have been examined by means of time-dependent density functional theory (TD-DFT). The low-lying singlet and triplet excited states have been calculated along the Co-C bond at the TD-DFT/BP86/6-31g(d) level of theory in order to investigate the dissociation process of MeCbl. These calculations have shown that the photodissociation is mediated by the repulsive 3(sigmaCo-C --> sigma*Co-C) triplet state. The key metastable photoproduct involved in Co-C bond photolysis was identified as an S1 state having predominantly dCo --> pi*corrin metal-ligand charge transfer (MLCT) character.  相似文献   

14.
The properties of the Co-C bond in methylcobalamin (MeCbl) are analyzed by means of first-principles molecular dynamics. The optimized structure is in very good agreement with experiments, reproducing the bent-up deformation of the corrin ring as well as the metal-ligand bond distances. The analysis of the binding energies, bond orders, and vibrational stretching frequencies shows that the axial base slightly weakens the Co-C bond (by 4%), while the alkyl ligand substantially reinforces the Co-axial base bond (by 90%). These findings support several experiments and provide insight into the conversion between the base-on and base-off forms of the MeCbl cofactor.  相似文献   

15.
16.
Rhenium(bipyridine)(tricarbonyl)(picoline) units have been linked covalently to tetraphenylmetalloporphyrins of magnesium and zinc via an amide bond between the bipyridine and one phenyl substituent of the porphyrin. The resulting complexes, abbreviated as [Re(CO)(3)(Pic)Bpy-MgTPP][OTf] and [Re(CO)(3)(Pic)Bpy-ZnTPP][OTf], exhibit no signs of electronic interaction between the Re(CO)(3)(bpy) units and the metalloporphyrin units in their ground states. However, emission spectroscopy reveals solvent-dependent quenching of porphyrin emission on irradiation into the long-wavelength absorption bands localized on the porphyrin. The characteristics of the excited states have been probed by picosecond time-resolved absorption (TRVIS) spectroscopy and time-resolved infrared (TRIR) spectroscopy in nitrile solvents. The presence of the charge-separated state involving electron transfer from MgTPP or ZnTPP to Re(bpy) is signaled in the TRIR spectra by a low-frequency shift in the nu(CO) bands of the Re(CO)(3) moiety similar to that observed by spectroelectrochemical reduction. Long-wavelength excitation of [Re(CO)(3)(Pic)Bpy-MTPP][OTf] results in characteristic TRVIS spectra of the S(1) state of the porphyrin that decay with a time constant of 17 ps (M = Mg) or 24 ps (M = Zn). The IR bands of the CS state appear on a time scale of less than 1 ps (Mg) or ca. 5 ps (Zn) and decay giving way to a vibrationally excited (i.e., hot) ground state via back electron transfer. The IR bands of the precursors recover with a time constant of 35 ps (Mg) or 55 ps (Zn). The short lifetimes of the charge-transfer states carry implications for the mechanism of reaction in the presence of triethylamine.  相似文献   

17.
Two blue absorbing and emitting mutants (S65G/T203V/E222Q and S65T at pH 5.5) of the green fluorescent protein (GFP) have been investigated through ultrafast time resolved infra-red (TRIR) and fluorescence spectroscopy. In these mutants, in which the excited state proton transfer reaction observed in wild-type GFP has been blocked, the photophysics are dominated by the neutral A state. It was found that the A* excited state lifetime is short, indicating that it is relatively less stabilised in the protein matrix than the anionic form. However, the lifetime of the A state can be increased through modifications to the protein structure. The TRIR spectra show that a large shifts in protein vibrational modes on excitation of the A state occurs in both these GFP mutants. This is ascribed to a change in H-bonding interactions between the protein matrix and the excited state.  相似文献   

18.
Described are picosecond and nanosecond time-resolved optical (TRO) spectral and nanosecond time-resolved infrared (TRIR) spectral studies of intermediates generated when the rhodium(I) complexes trans-RhCl(CO)L2 (L = PPh3 (I), P(p-tolyl)3 (II), or PMe3 (III)) are subjected to photoexcitation. Each of these species, which are precursors in the photocatalytic activation of hydrocarbons, undergoes CO labilization to form an intermediate concluded to be the solvated complex RhCl(Sol)L2 (A(i)). The picosecond studies demonstrate that an initial transient is formed promptly (<30 ps), which decays to A(i) with lifetimes ranging from 40 to 560 ps depending upon L and the medium. This is proposed on the basis of ab initio calculations to be a metal-to-ligand charge transfer (MLCT) excited state. Second-order rate constants (kCO) for reaction of the A(i) with CO were determined, and these depend on the nature of L and the solvent, the slowest rate being for A(I) in tetrahydrofuran (kCO = 7.1 x 10(6) M(-1) x s(-1)), the fastest being for A(III) in dichloromethane (1.3 x 10(9) M(-1) x s(-1)). Each A(i) also undergoes competitive unimolecular reaction with solvent to form long-lived transients with TRIR properties suggesting these to be Rh(III) products of oxidative addition. Although this was mostly suppressed by the presence of higher concentrations of CO (which trapped A(i) to re-form the starting complexes in each case), both TRO and TRIR experiments indicate that a fraction of the oxidative addition could not be quenched. Thus, the short-lived MLCT state or a vibrationally hot species formed during the decay of this excited state appears to participate directly in C-H activation.  相似文献   

19.
A force field for the cobalt (III) corrinoids (derivatives of vitamin B12) for use with a modified version of the molecular mechanics program 2(87) has been developed empirically around 19 cobalt corrinoid crystal structures. Bond lengths, bond angles and torsional angles are reproduced with r.m.s. differences of 0.01 Å, 2.4 °, and 4.2 °, respectively, within the standard deviation of the mean of these parameters found in the solid state. The axial ligand occupying the lower coordination site in the cobalamins, 5,6-dimethylbenzimidazole, is shown to have very limited rotational freedom and is constrained by the downward-pointing b and d propionamide side chains of the corrin ring. Strain-energy profiles for rotation of the side chains of the corrin ring show the existence of several local energy minima and this explains the observed variability in the orientations of these side chains in the solid state. The known change in conformation which occurs in the C ring when the e side chain is epimerized from the lower to the upper face of the corrin ring in cyano-13-epicobalamin is correctly predicted, provided the starting conformation of the C ring is unbiased. A study of cyano-8-epicobalamin indicates that an analogous conformational change does not occur in the B ring and the epimerized d side chain assumes an equatorial orientation relative to the corrin ring. Parameters for the Co---C bond in alkylcobalamins were developed and the structure of methyl- and adenosylcobalamin are accurately reproduced. An examination of the strain energy consequences of rotation of the adenosyl ligand about the Co---C bond identifies a number of low-energy conformations at least two of which, in which adenosyl lies over the “southern” and “eastern” portions of the corrin ring, respectively, have been previously deduced from NMR observations. Coordinated neopentyl in neopentylcobalamin is much more hindered to rotation about the Co---C bond and the lowest conformation finds two γ(C) atoms straddling the upwardly projecting C46 methyl group of the corrin.  相似文献   

20.
Density functional theory has been applied to the investigation of the reductive cleavage mechanism of methylcobalamin (MeCbl). In the reductive cleavage of MeCbl, the Co-C bond is cleaved homolytically, and formation of the anion radical ([MeCbl]*-) reduces the dissociation energy by approximately 50%. Such dissociation energy lowering in [MeCbl]*- arises from the involvement of two electronic states: the initial state, which is formed upon electron addition, has dominant pi*corrin character, but when the Co-C bond is stretched the unpaired electron moves to the sigma*Co-C state, and the final cleavage involves the three-electron (sigma)2(sigma*)1 bond. The pi*corrin-sigma*Co-C states crossing does not take place at the equilibrium geometry of [MeCbl]*- but only when the Co-C bond is stretched to 2.3 A. In contrast to the neutral cofactor, the most energetically efficient cleavage of the Co-C bond is from the base-off form. The analysis of thermodynamic and kinetic data provides a rationale as to why Co-C cleavage in reduced form requires prior departure of the axial base. Finally, the possible connection of present work to B12 enzymatic catalysis and the involvement of anion-radical-like [MeCbl]*- species in relevant methyl transfer reactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号