首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Abstract  

A mononuclear complex [CoL2Cl2]·3.5H2O (L = 2-[(2,2-diphenylethylimino)methyl]pyridine-1-oxide) has been synthesized and characterized by X-ray structure analysis. The crystal structure confirms the formation of an interesting porous framework with channel diameters of about 8 ? through weak C–H···π and C–H···Cl interactions. The magnetic properties of this complex have also been studied, and the susceptibility and magnetization data were analyzed in terms of the spin Hamiltonian formalism. They confirm substantial zero-field splitting, D/hc = 75 cm−1.  相似文献   

2.
3.
[Co(S2CNRR’)2] complexes [R = R’ = CH3, C2H5, C3H7, C4H9, or CH2C6H5; RR’ = (CH2)5, (CH2)6, or (CH2)2O(CH2)2] were prepared via interaction of CoCl2 with sodium dithiocarbamates in aqueous medium (pH 6–7). [Co(S2CNRR’)2] are low-spin compounds (μeff 2.19–2.45 μB) with distorted square-planar geometry of the CoS4 coordination node. The Co-S bonds length is 2.22–2.26 Å, and the distance between cobalt and carbon atoms is 2.73–2.74 Å.  相似文献   

4.
By utilizing nicotinic acid as a co-ligand, two new azido-bridged cobalt(II) complexes with the formulae [Co(2)(N(3))(nic)(2)Cl(H(2)O)](n) (1) and [Co(N(3))(nic)](n) (2) (nic = nicotinate) have been synthesized under solvothermal condition and structurally characterized. Complex 1 exhibits a rare three-dimensional (3D) Kagomé topology with [Co4] units as connecting nodes. Complex 2 is also a 3D structure which contains 1D Co(II)-μ-1,1-azido chains as rod-shaped SBUs. Magnetic data analysis shows that ferromagnetic coupling intra-[Co4]-cluster and antiferromagnetic interaction inter-[Co4]-cluster exists in complex 1, while complex 2 exhibits metamagnetism with a critical field of 5.5 kOe.  相似文献   

5.
Synthesis and characterization of six copper(II) and cobalt(II) octahedral complexes [M(6-OHpic)2(H2O)2] (6-OHpic is 6-hydroxypicolinato), [M(2-OHnic)2(H2O)2] (2-OHnic is 2-hydroxynicotinato), [Cu(6-OHnic)2(H2O)2] (6-OHnic is 6-hydroxynicotinato) as well as [Co(H2O)6](6-OHnic)2 are reported. Their characterization was carried out using elemental analysis, infrared, and magnetic measurements. Based on IR spectra, N,O-coordination of 6-OHpic (via the oxygen atom of the carboxyl group and the nitrogen atom of the pyridine ring), O,O-asymmetrically chelating coordination of the carboxyl groups as well as ionic coordination of 6-OHnic and chelating O,O-coordination (through the oxygen atom of the carboxyl group and the oxygen atom of the amide group) of keto(amide) tautomer of 2-OHnic were supposed. Moreover, crystal structures of 2-OHnicH and the complex [Co(2-OHnic)2(H2O)2]) were determined by X-ray single crystal structure analysis. The system of hydrogen bonds predominantly stabilizes the keto(amide) tautomer of both 2-hydroxynicotinic acid and 2-OHnic anion in the cobalt(II) complex. Intermolecular hydrogen bonds (between the oxygen atom of the amide group and the hydrogen atom of the NH group) interconnect two neighbouring molecules of 2-OHnicH forming dimers. Cobalt(II) in complex [Co(2-OHnic)2(H2O)2] has nearly a regular compressed tetragonal bipyramidal arrangement. Presented at the 1st International Conference “Applied Natural Sciences” on the occasion of the 10th anniversary of the University of Ss. Cyril and Methodius, Trnava, 7–9 November 2007.  相似文献   

6.
Synthesis (hydrothermal and metathesis), characterization (UV-vis, IR, TG/DTA), single-crystal X-ray structures, and magnetic properties of three cobalt(II)-pyromellitate complexes, purple [Co(2)(pm)](n) (1), red [Co(2)(pm)(H(2)O)(4)](n) x 2nH(2)O (2), and pink [Co(H(2)O)(6)](H(2)pm) (3) (H(4)pm = pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid)), are described. 1 consists of one-dimensional chains of edge-sharing CoO(6) octahedra that are connected into layers via O-C-O bridges. The layers are held together by the pyromellitate (pm(4-)) backbone to give a three-dimensional structure, each ligand participating in an unprecedented 12 coordination bonds (Co-O) to 10 cobalt atoms. 2 consists of a three-dimensional coordination network possessing cavities in which unbound water molecules reside. This highly symmetric network comprises eight coordinate bonds (Co-O) between oxygen atoms of pm(4-) to six trans-Co(H(2)O)(2). 3 possesses a hydrogen-bonded sandwich structure associating layers of [Co(H(2)O)(6)](2+) and planar H(2)pm(2-). The IR spectra, reflecting the different coordination modes and charges of the pyromellitate, are presented and discussed. The magnetic properties of 1 indicate complex behavior with three ground states (collinear and canted antiferromagnetism and field-induced ferromagnetism). Above the Néel temperature (T(N)) of 16 K it displays paramagnetism with short-range ferromagnetic interactions (Theta = +16.4 K, mu(eff) = 4.90 mu(B) per Co). Below T(N) a weak spontaneous magnetization is observed at 12.8 K in low applied fields (H < 100 Oe). At higher fields (H > 1000 Oe) metamagnetic behavior is observed. Two types of hysteresis loops are observed; one centered about zero field and the second about the metamagnetic critical field. The critical field and the hysteresis width increase as the temperature is lowered. The heat capacity data suggest that 1 has a 2D or 3D magnetic lattice, and the derived magnetic entropy data confirm an anisotropic s(eff) = 1/2 for the cobalt(II) ion. Magnetic susceptibility data indicate that 2 and 3 are paramagnets.  相似文献   

7.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   

8.
The synthesis of nickel nanoparticles using poly(N-vinilpyrrolidone) (PVP) as protective agent was studied. The nanoparticles were prepared in air according to a modified polyol route, using nickel chloride as precursor and sodium borohydride as reducing agent. Samples with different nickel/PVP ratio were obtained. The X-ray diffraction and transmission electron microscopy (TEM) measurements indicate the occurrence of face-centered cubic metallic nickel nanoparticles with a medium diameter of 3.8 nm and good size dispersion. Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) data show an effective interaction between the nickel nanoparticles surface and the carboxyl oxygen atoms of PVP. Magnetic measurements show single-domain nonideal superparamagnetism behavior due to dipolar magnetic coupling between particles.  相似文献   

9.
Summary Nickel(II) and cobalt(II) complexes of rhodanine (Hrd) were prepared from the metal chloride or acetate and the ligand. With an excess of NH3, the octahedral [Ni(NH3)6](Rd)2 and [Co(NH3)5Rd]Rd complexes are ob-tained; use of only two NH3 equivalents per metal ion yields the Ni(Rd)2 sd HRd · NH3 and [Co(Rd)2 ] · 1.5 H2O complexes, the first with tetragonally distorted hexacoordination and the second with polymeric octahedral coordination. By using two equivalents of NaOH per metal ion, the binuclear [Ni(Rd)2][Ni(Rd)2 · (HRd)2] · 2 H2O complex is formed having one diamagnetic planar and one high spin octahedral chromophore. Rhodanine is coordinated through the thiocarbonylic sulphur in the neutral form and through the thiocarbonylic sulphur and the deprotanated nitrogen atoms in the rhodanidato anionic form.  相似文献   

10.
Complexes of a series of tertiary phosphines bearing 2-thienyl groups with nickel(II) and cobalt(II) halides and thiocyanates have been prepared and their magnetic and spectroscopic properties are presented. The nickel(II) halide and cobalt(II) halide and thiocyanate complexes have a distorted tetrahedral structure, whereas the nickel(II) thiocyanate complexes are square planar. Consideration of the spectroscopic data for the tetrahedral nickel(II) halide complexes of the thienylphosphines indicates that a 2-thienyl substituent is more electron-releasing towards phosphorus than is a phenyl group when the phosphorus is coordinated to the metal, suggesting that in this situation effects of interactions between the heterocyclic ring system and phosphorus may be significant in influencing the donor properties of the phosphine. Calculation of the Racah parameters for the nickel(II) complexes indicates that the nephelauxetic effects of the thienylphosphines are different from those of triphenylphosphine and that there is a greater degree of covalency in the metal-ligand bond in the case of the thienylphosphines.  相似文献   

11.
Summary New coordination compounds of NiII and CoII with dichloropyrimidinoguanidine (L) have been obtained and characterized by physico-chemical and spectroscopic methods. The complexes have the general formulae: [ML3](ClO4)2, [ML2(SO4)], [ML2(NCS)2], (M = Ni or Co), [NiL2(ClO4)2] and [CoL2](ClO4)2. The ligands are bonded to the metal ion via one nitrogen atom from the pyrimidine heterocyclic ring and one from the guanidine group.  相似文献   

12.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

13.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

14.
15.
The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu72-OH2)63-O)6(adenine)6](NO3)2·6H2O (1) and [Cu22-H2O)2(adenine)2(H2O)4](NO3)4·2H2O (2) are reported. The heptanuclear compound is composed of a central octahedral CuO6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn–Teller distorted octahedral coordination characteristic of a d9 center. The study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.  相似文献   

16.
A new Co(II) diphosphonate compound, [Co(HEDPH2)2] (4,4′-bipyH2)?·?H2O (1) has been successfully obtained by a rheological phase reaction at 80°C. Single-crystal diffraction analysis shows a 1-D chain structure and the 1-D chains are assembled via hydrogen bonds into a 3-D supramolecular structure with channels. The protonated 4,4′-bipy molecules are encapsulated in the channels. Magnetic study shows 1 to exhibit antiferromagnetic interaction in the 1D Co--O--P--O--Co chain. Crystal data for 1: monoclinic, space group Cc, a?=?15.754(6)?Å, b?=?14.457(5)?Å, c?=?10.020(4)?Å, β?=?92.024(6)°, V?=?2280.7(14)?Å3, Z?=?4.  相似文献   

17.
18.
19.
The synthesis, structure, and magnetic properties of two new tetranuclear Cu(II) complexes containing N,N,N',N'-tetraethylpyridine-2,6-dithiocarboxamide (S-dept) of formula [Cu(2)Cl(2)(mu-S-dept)(2)][Cu(2)Cl(4)(mu-Cl)(2)] (1) and [Cu(2)(mu-Cl)(2)(S-dept)(2)][CuCl(3)(EtOH)](2) (2) are reported. Their X-ray crystal structures reveal that the complexes are composed of anionic and cationic dimers, that in both cases contain the metal centers which interact via Coulombic and/or hydrogen bonding interactions. In both cases, the Cu centers in the anionic moieties adopt a slightly distorted tetrahedral geometry whereas for the cationic moieties they adopt a square-pyramidal type of geometry. Magnetic susceptibility data show that compounds 1 and 2 present an overall antiferromagnetic behavior arising from the contribution of both anionic and cationic moieties. For 1, the best fit obtained gave J(1) = -2.62 +/- 0.19 cm(-1), J(2) = -19.54 +/- 0.47 cm(-1), and g(2) = 2.164 +/- 0.004 cm(-1) (R = 8.28 x 10(-5)) whereas for 2 it gave J(1) = 4.48 +/- 2.73 cm(-1), g(1) = 2.20 +/- 0.03, J(2) = -11.26 +/- 2.01 cm(-1), and g(2) = 2.10 +/- 0.03 (R = 1.15 x 10(-4)). The nature of the superexchange pathways in 1 and 2 is discussed on the basis of structural, magnetic, and molecular orbital considerations. Theoretical calculations are performed at the extended Huckel level in order to obtain their molecular orbitals and energies using their crystallographic data.  相似文献   

20.
The synthesis, X-ray structure, and electrochemical and photophysical characterization of [Ru(phen)(2)dpq-n][PF(6)](2) (phen = phenanthroline, dpq-n = dipyridoquinoxaline-norbornene) are described. This complex contains a Ru(phen)(3)(2+) moiety in close conjugation with a norbornene unit and is the first example of a Ru(II) diimine complex capable of undergoing ring-opening metathesis polymerization. Luminescence studies of this complex showed an increase in quantum efficiency in polar solvents and in water. Preliminary ring-opening metathesis polymerization studies, carried out at low monomer-to-initiator ratio, showed the formation of an oligomeric mixture composed mainly of the dimer of this complex. This dimer exhibits photophysical and redox properties similar to those of the monomer, indicating that the Ru(phen)(3)(2+) moiety remains intact during the polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号