首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unusual continuous film formation process of lateral pentyloxy substituted poly(p-phenylene terephthalate)s (s-PPPT) and poly(carbonate) (PC) is observed. A liquid film of polymer solution creeps over the surface of water dropped into the polymer solution. By vaporization of the solvent a solid polymer film is formed on the water surface and can be removed. The driving force for the film formation mechanism is assumed by the reduction of the surface tension of water. Experiments verify this mechanism by increasing the film formation speed using a gas stream, by reducing the formation speed through lowering the surface tension by rinsing agents, and by lowering the solubility of the polymer. As expected, no effects are found by variation of the pH-value of water. Necessary conditions for the film formation process are: good solubility of the polar polymers in organic solvents having a high vapor pressure, complete phase separation, solution density higher than water density, and a surrounding gas phase unsaturated with solvent vapor.The thickness of the mechanically stable films is less than 0.5 m. The films are amorphous by microscopical, FT-IR, x-ray, and DTA investigations.  相似文献   

2.
We use the recent fluids density functional theory of Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005); J. Chem. Phys. 122, 094506 (2005)] to investigate the phase behavior of athermal polymer/nanoparticle blends near a substrate. The blends are modeled as a mixture of hard spheres and freely jointed hard chains, near a hard wall. There is a first order phase transition present in these blends in which the nanoparticles expel the polymer from the surface to form a monolayer at a certain nanoparticle concentration. The nanoparticle transition density depends on the length of the polymer, the nanoparticle diameter, and the overall bulk density of the system. The phase transition is due to both packing entropy effects related to size asymmetry between the components and to the polymer configurational entropy, justifying the so-called "entropic push" observed in experiments. In addition, a layered state is found at higher densities which resembles that in colloidal crystals, in which the polymer and nanoparticles form alternating discrete layers. We show that this laminar state has nearly the same free energy as the homogeneously mixed fluid in the bulk and is nucleated by the surface.  相似文献   

3.
In an athermal blend of nanoparticles and homopolymer near a hard wall, there is a first order phase transition in which the nanoparticles segregate to the wall and form a densely packed monolayer above a certain nanoparticle density. Previous investigations of this phase transition employed a fluids density functional theory (DFT) at constant packing fraction. Here we report further DFT calculations to probe the robustness of this phase transition. We find that the phase transition also occurs in athermal systems at constant pressure, the more natural experimental condition than constant packing fraction. Adding nanoparticle-polymer attractions increases the nanoparticle transition density, while sufficiently strong attractions suppress the first-order transition entirely. In this case the systems display a continuous transition to a bulk layered state. Adding attractions between the polymers and the wall has a similar effect of delaying and then suppressing the first-order nanoparticle segregation transition, but does not lead to any continuous phase transitions.  相似文献   

4.
Cellulose - This work deals with a green route to fabricate a biocompatible hybrid film composed of silver nanoparticles (AgNPs) and ethyl cellulose (EC). The hybrid film (AgNP/EC), with a...  相似文献   

5.
Solid polymer electrolytes (SPE) have been identified as a class of materials which could enable the fabrication of high energy density solid state lithium rechargeable batteries which could meet the performance requirements for advanced portable electronic and automotive applications. In order to achieve this goal, novel SPE systems having high ionic conductivity and good mechanical properties at or near ambient temperature must be developed. Novel lithium salts believed to be useful in realizing this objective have recently been proposed. The thermal behavior of SPE systems based on high molecular weight poly(ethylene oxide) (PEO) and on two novel salts, the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the lithium tris(trifluoromethylsulfonyl)-methanide (LiTSFM) is reported and compared with the thermal behavior of the high molecular weight PEO–lithium trifluoromethane sulfonate (LiTFLT) SPE system. Phase diagrams for the PEO–LiTFSI and PEO–LiTFSM SPE systems have been established and are discussed in terms of their impact on SPE-based rechargeable lithium battery technologies. The use of a novel plasticizer in conjunction with the PEO–LiTFSI-based SPE system is reported and it is shown how this modifies the thermal behavior of the PEO–LiTFSI SPE system.  相似文献   

6.
The construction of highly stable and efficiently assembled multilayer films of purely water soluble gold nanoparticles is reported. Citrate-stabilized nanoparticles (CS-NPs) of average core diameter of 10 nm are used as templates for stabilization-based exchange reactions with thioctic acid to form more robust aqueous NPs that can be assembled into multilayer films. The thioctic acid stabilized nanoparticles (TAS-NPs) are networked via covalent and electrostatic linking systems, employing dithiols and the cationic polymer poly(L-lysine), respectively. Multilayer films of up to 150 nm in thickness are successfully grown at biological pH with no observable degradation of the NPs within the film. The characteristic surface plasmon band, an optical feature of certain NP film assemblies that can be used to report the local environment and core spacing within the film, is preserved. Growth dynamics and film stability in solution and in the air are examined, with poly(L-lysine) linked films showing no evidence of aggregation for at least 50 days. We believe these films represent a pivotal step toward exploring the potential of aqueous NP film assemblies as a sensing apparatus.  相似文献   

7.
We report a new and simple method for the formation of thin films at the interface between aqueous silica Ludox dispersions and lipid solutions in decane. The lipids used are stearic acid, stearyl amine, and stearyl alcohol alongside silica Ludox nanoparticle dispersions of varying pH. At basic pH thin films consisting of a mixture of stearic acid and silica nanoparticles precipitate at the interface. At acidic and neutral pH we were able to produce thin films consisting of stearyl amine and silica particles. The film growth was studied in situ with interfacial shear rheology. In addition to that, surface pressure isotherm and dynamic light scattering experiments were performed. The films all exhibit strong dynamic rheological moduli, rendering them an interesting material for applications such as capsule formation, surface coating, or as functional membranes.  相似文献   

8.
Poly(vinyl chloride) was blended with ethylene-vinyl acetate copolymer containing 70 wt% of vinyl acetate. The system shows a single glass transition temperature for all compositions, indicating their miscibility. TheT g vs. composition curves display an inflection, which changes with the chemical environment of the initial solution. The best fit to the shape of the curve was well reproduced by the Kovacs-Braun equation. The T g values reveal local heterogeneity, which means no total miscibility at a molecular level. Negative values of the Flory-Huggins interaction parameter were obtained from the calorimetric data.Support for this research by CNPq, FINEP and CAPES is appreciated.  相似文献   

9.
We demonstrate how to tailor the spatial distribution of gold nanoparticles (Au-NPs) of different sizes within polystyrene (PS) thin, supported, film hosts, thereby enabling the connection between the spatial distribution of Au-NPs within the polymer film and the optical properties to be determined. The real, n, and imaginary parts, k, of the complex refractive indices N = n(λ)+ik(λ) of the nanocomposite films were measured as a function of wavelength, λ, using multivariable angle spectroscopic ellipsometry. The surface plasmon response of films containing nearly homogeneous Au-NP distributions were well described by predictions based on classical Mie theory and the Drude model. The optical spectra of samples containing inhomogeneous nanoparticle distributions manifest features associated with differences in the size and interparticle spacings as well as the proximity and organization of nanoparticles at the substrate and free surface.  相似文献   

10.
An overview of polymer latex film formation and properties   总被引:10,自引:0,他引:10  
The literature on polymer latex film formation has grown enormously in recent times--driven by the need to find alternatives for solvent-based systems with their adverse environmental impacts. Although greater insight has been shown by the use of modern instrumental techniques such as small angle neutron scattering, direct non-radiative energy transfer and atomic force microscopy, the actual mechanisms involved in deforming spherical particles into void-free films are still the subject of controversy and debate. Surfactant-free homopolymer model colloid latices, favoured in academic studies, together with latices containing surfactants whose redistribution can influence film properties, and the more complex copolymer, blended, core-shell and pigmented systems needed to satisfy a full range of film properties are all considered.  相似文献   

11.
Conducting polymer (polyaniline) sheets are shown to be active substrates to promote the growth of nanostructured silver thin films with highly tunable morphologies. Using the spontaneous electroless deposition of silver, we show that a range of nanostructured metallic features can be controllably and reproducibly formed over large surface areas. The structural morphology of the resulting metal-polymer nanocomposite is demonstrated to be sensitive to experimental parameters such as ion concentration, temperature, and polymer processing and can range from densely packed oblate nanosheets to bulk crystalline metals. The deposition mechanisms are explained using a diffusion-limited aggregation (DLA) model to describe the semi-fractal-like growth of the metal nanostructures. We find these composite films to exhibit strong surface-enhanced Raman (SERS) activity, and the nanostructured features are optimized with respect to SERS activity using a self-assembled monolayer of mercapto-benzoic acid as a model Raman reporter. SERS enhancements are estimated to be on the order of 10(7). Through micro-Raman SERS mapping, these materials are shown to exhibit uniform SERS responses over macroscopic areas. These metal-polymer nanocomposites benefit from the underlying polymer's processability to yield SERS-active materials of almost limitless shape and size and show significant promise for future SERS-based sensing and detection schemes.  相似文献   

12.
The power dependence of the optical poling process of a new azo chromophore in the polymethylmethacrylate matrix at room temperature has been investigated. The existing theory is found to be inconsistent with the experiment. A simple model based on the rate equation is proposed to describe the writing process of the chromophore/polymer system. The measured growth rate and the plateau second-harmonic generation intensity as induced by all optical poling are found to be in good agreement with the prediction of the simple model.  相似文献   

13.
14.
We present a study of chain interdiffusion in films formed by specially architectured PBMA nanoparticles by Förster Resonance Energy Transfer – FRET. Polymer nanoparticles contained linear chains with narrower molecular weight distributions than other previous reports, allowing a more detailed study. Apparent fractions of mixing and diffusion coefficients, determined from the quantum efficiency of energy transfer, were used to characterize the interdiffusion mechanism in the different films. The resistance of the films to dissolution by a good solvent was finally correlated with the interdiffusion results, in order to get information about film healing. We concluded that whenever interdiffusion occurs between nanoparticles containing linear chains and fully cross-linked nanoparticles, healing becomes more effective in spite of showing slower interdiffusion. We also observed that particles with longer chains are more effective for film healing. Finally, we concluded that interdiffusion occurs both ways across interfaces in blends formed by particles swollen with linear chains of different molecular weights.  相似文献   

15.
Positively charged gold nanoparticle (positively charged nano-Au), which was prepared, characterized by ξ-potential and transmission electron microscopy (TEM) was used in combination with l-cysteine to fabricate a modified electrode for electrocatalytic reaction of biomolecules. Compared with electrodes modified by negatively charged gold nanoparticle/l-cysteine, or l-cysteine alone, the electrode modified by the positively charged gold nanoparticle/l-cysteine exhibited excellent electrochemical behavior toward the oxidation of biomolecules such as ascorbic acid, dopamine and hydrogen peroxide. Moreover, the proposed mechanism for electrocatalytic response of positively charged gold nanoparticle was discussed. The immunosensor showed a specific to ascorbic acid in the range 5.1 × 10−7-6.7 × 10−4 M and a low detection limit of 1.5 × 10−7 M. The experimental results demonstrate that positively charged gold nanoparticle have more efficient electrocatalytic reaction than negatively charged gold nanoparticle, which opens up new approach for fabricating sensor.  相似文献   

16.
The surfactant-mediated desorption of adsorbed poly(vinylpyrrolidone), PVP, from anionic silica surfaces by sodium dodecyl sulfate, SDS, was observed. While photon correlation spectroscopy shows that the size of the polymer-surfactant-particle ensemble grows with added SDS, a reduction in the near-surface polymer concentration is measured by solvent relaxation NMR. Volume fraction profiles of the polymer layer extracted from small-angle neutron scattering experiments illustrate that the adsorbed polymer layer has become more diffuse and the polymer chains more elongated as a result of the addition of SDS. The total adsorbed amount is shown to decrease due to Coulombic repulsion between the surfactant-polymer complexes and between the complexes and the anionic silica surface.  相似文献   

17.
The effect of stereoregularity, in terms of isotactic triad content on the thermal behavior of carbon fiber precursor polymers synthesized through different polymerization routes such as solid state and radical solution polymerization techniques, was investigated by the thermogravimetric analysis and differential scanning calorimetric measurements. The isotactic contents of I-PAN and A-PAN were estimated with 13C NMR. The thermal cyclization reactions of atactic polyacrylonitrile (A-PAN) with low isotactic content (26.4–29.7 %) occurred at a lower temperature than that of isotactic polyacrylonitrile (I-PAN) with higher content (48.7–51.6 %). The percentage of mass loss observed in I-PAN was less as compared to A-PAN. The molecular mass characteristics of PAN obtained through solid state and radical solution polymerization were [M n (10.2–14.3 × 104), M v (2.44–3.26 × 105)] and [M n (10.2–14.3 × 104), M v (2.29–2.74 × 105)] Daltons (Da).  相似文献   

18.
The effects of the pretreatment of copper in benzimidazole solutions on the anodic reactions have been observed. The structures of the chemisorbed benzimidazole on copper were studied by using the infrared reflection-absorption technique and X-ray photoelectron spectroscopy. It was found that a compact film of benzimidazolato copper(I) was formed on the copper surface when copper was immersed in a stirred benzimidazole solution and cyclic voltammetry applied. This compact polymer film inhibited anodic oxidation effectively.  相似文献   

19.
Coarse‐grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains on the nanoparticle (NP) surface at various polymer–NP interactions, chain lengths, and stiffness. At a strong polymer–NP interaction, long chains preferentially occupy interfacial region and squeeze short chains out of the interfacial region. Semiflexible chains with proper stiffness wrap NPs dominantly in a helical fashion, whereas fully flexible chains constitute the surrounding matrix. As chain stiffness increases, the results of the preferential adsorption are the opposite. The chain‐length or chain‐stiffness‐induced selective adsorption behavior of polymer chains in the polymer–NP interfacial region relies on a delicate competition between entropic and enthalpic contributions to the total free energy. These results could provide insights into polymer–NP interfacial adsorption behavior and guide the design of high‐performance nanocomposites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1829–1837  相似文献   

20.
The wrinkling of phase-separated binary polymer blend film was studied through combining the Monte Carlo (MC) simulation for morphologies with the lattice spring model (LSM) for mechanical properties. The information of morphology and structure obtained by use of MC simulation is input to the LSM composed of a three-dimensional network of springs, which allows us to determine the wrinkling and the mechanical properties of polymer blend film, such as strain, stress, and Young’s modulus. The simulated results show that the wrinkling of phase-separated binary polymer blend film is related not only to the structure of morphology, but also to the disparity in elastic moduli between polymers of blend. Our simulation results provide fundamental insight into the relationship between morphology, wrinkling, and mechanical properties for phase-separated polymer blend films and can yield guidelines for formulating blends with the desired mechanical behavior. The wrinkling results also reveal that the stretching of the phase-separated film can form the micro-template, which has a wide application prospect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号