首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张建军  王瑞芬 《分析化学》2001,29(10):1209-1212
用TG-DTG技术研究了对氯苯甲酸铕与邻菲咯啉络合物在静态空气中的热分解,用Coats-Redfern(CR)法、Horowitz-Metzger(HM)法、Madhusudanan-Krishnan-NInan(MKN)法、Ozawa法和Kissinger法计算了对氯苯甲酸铕与邻菲咯啉络合物第一步热分解反应的动力学参数活化能(E)、指前因子(A)、反应级数(n)等。用等温TG法得到失重10%的E、A值和寿命方程:lnτ=-23.0189 17974.1/T。  相似文献   

2.
Thermal decomposition of BaC2O4·0.5H2O in air was studied by a combination of stepwise isothermal analysis (SIA) and non-isothermal thermogravimetry. The results from both techniques show that the crystal water is released in one step and that anhydrous barium oxalate is decomposed in one step, while BaCO3 decomposes in three steps to BaO, forming two intermediate compounds with the formulas of BaCO3·(BaO)2 and (BaCO3)0.5·(BaO)2.5. Reaction mechanism analyses using the data from SIA measurements show that the controlling mechanism for all the five decomposition steps in isothermal conditions is a two-dimensional phase-boundary controlled process. Kinetic parameters are obtained for the five decomposition steps from the non-isothermal thermogravimetric data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The kinetics of the non-isothermal decomposition of potassium nickel(II) oxalate in air were studied for non-irradiated and irradiated crystals using thermogravimetric techniques. Analysis of kinetic data were performed using the direct differential method, the integral methods due to Coats-Redfern, Ozawa and a composite integral method. The results of the kinetic analysis of dynamic data and the effects of radiation were discussed and compared with those obtained under isothermal conditions.  相似文献   

4.
Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide   总被引:1,自引:0,他引:1  
The kinetics involved in the thermal decomposition of Kapton® polyimide 100HN under nitrogen atmosphere were studied by applying various fitting techniques to the isothermal and non-isothermal gravimetric data. The correlation of the reaction mechanism fitting, the analytical model fitting and the isoconversional method to these data was examined in relation to the kinetic parameters and the kinetic predictions. The mechanisms for solid-state reactions fit the isothermal data very well but result in highly uncertain values for the kinetic parameters when applied to the non-isothermal data. Isoconversional methods show that the apparent activation energy depends on the extent of conversion but do not provide information for the reaction order and the pre-exponential factor. Three single heating-rate analytical models by Coats-Redfern, MacCallum-Tanner and van Krevelen were analysed using the non-isothermal data. A multi-heating rate model is proposed and its validity is compared to the single-heating rate models on the basis of kinetic predictions.  相似文献   

5.
Kinetics analysis for non-isothermal decomposition of un-irradiated and pre-γ-irradiated anhydrous indium acetate was studied in the temperature range (298–1273 K) in static air using dynamics thermogravimetric techniques. The data were analyzed using various solid state reaction models. Integral method using Coats–Redfern equation was applied in dynamic data analysis. The results showed that the kinetic of non-isothermal (dynamic) decomposition was controlled by phase boundary process. The activation energies for un-irradiated and pre-γ-irradiated anhydrous indium acetate were calculated and evaluated.  相似文献   

6.
The thermal decomposition of potassium iodate (KIO3) has been studied by both non-isothermal and isothermal thermogravimetry (TG). The non-isothermal simultaneous TG–differential thermal analysis (DTA) of the thermal decomposition of KIO3 was carried out in nitrogen atmosphere at different heating rates. The isothermal decomposition of KIO3 was studied using TG at different temperatures in the range 790–805 K in nitrogen atmosphere. The theoretical and experimental mass loss data are in good agreement for the thermal decomposition of KIO3. The non-isothermal decomposition of KIO3 was subjected to kinetic analyses by model-free approach, which is based on the isoconversional principle. The isothermal decomposition of KIO3 was subjected to both conventional (model fitting) and model-free (isoconversional) methods. It has been observed that the activation energy values obtained from all these methods agree well. Isothermal model fitting analysis shows that the thermal decomposition kinetics of KIO3 can be best described by the contracting cube equation.  相似文献   

7.
钐-邻硝基苯甲酸与1,10-邻菲咯啉配合物的热分解动力学   总被引:2,自引:0,他引:2  
The complex of Sm2(o-NBA)6(PHEN)2 (o-NBA, o-Nitrobenzoate; PHEN, 1,10-phenanthroline) was prepar-ed and characterized by elemental analysis, IR and UV spectraoscopy. The thermal decomposition mechanism of Sm2(o-NBA)6(PHEN)2 was studied under a static air atmosphere by TG-DTG. The thermal decomposition kinetics of the complex for the first stage was studied under non-isothermal condition. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: G(α)=[-ln(1-α)]1/2, f(α)=2(1-α)[-ln(1-α)]1/2. The activation energy E for the first stage is 259.50 kJ·mol-1, the pre-exponential factor A is 36.19×1018 min-1. The lifetime equation at weight-loss of 10% was deduced as lnτ=-36.70+27 572.12/T by isothermal thermogravimetric analysis.  相似文献   

8.
Thermal analysis is one of the most widely used methods for studying the solid state of pharmaceutical substances. TG/DTG and DSC curves provide important information regarding the physical properties of the pharmaceutical compounds (stability, compatibility, polymorphism, kinetic analysis, phase transitions etc.). The purpose of a kinetic investigation is to calculate the kinetic parameters and the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the diazepam, nitrazepam and oxazepam thermal decomposition was performed, under non-isothermal and isothermal conditions and in a nitrogen atmosphere, for the temperature steps: 483, 498, 523, 538 and 553 K. The TG/DTG data were processed by three methods: isothermal model-fitting, Friedman’s isothermal-isoconversional and Nomen-Sempere non-parametric kinetics. In the model-fitting methods the kinetic triplets (f(α), A and E a) that defines a single reaction step resulted in being at variance with the multi-step nature of diazepines decomposition. The model-free approach represented by isothermal and non-isothermal isoconversional methods, gave dependences of the activation energies on the extent of conversion. It is very difficult to obtain an accord with the similar data which resulted under non-isothermal conditions from a previous work. The careful treatment of the kinetic parameters obtained in different thermal conditions was confirmed to be necessary, as well as a different strategy of experimental data processing.  相似文献   

9.
With on-line coupled thermo-gravimetric analyzer-Fourier transform infrared spectrometer technique, the thermal decomposition of lithium hexafluorophosphate (LiPF6) and its gas evolution at inert environment (H2O<10 ppm) were studied under both non-isothermal and isothermal conditions. The results showed that the LiPF6 decomposition is a single-stage reaction with LiF as final residue and PF5 as gas product. In addition, its decomposi-tion kinetics was determined as 2D phase boundary movement (cylindrical symmetry) under both non-isothermal and isothermal conditions. Furthermore, the activation energy of LiPF6 decomposition was calculated as 104 and 92 kJ/mol for non-isothermal and isothermal con-ditions, respectively.  相似文献   

10.
Kinetics of the thermal decomposition of 3-methylaminopropylamine which was used as a structure-directing agent in the synthesis of AlPO4-21 has been studied under isothermal and non-isothermal conditions. The decomposition is a single-step reaction occurring in the 573–663 K range. It is a phase-boundary-controlled process, described by the ‘F2/3, R3’ kinetic model. The activation energy values obtained under the non-isothermal and isothermal conditions lie in the 173–151 kJ mol–1 range.  相似文献   

11.
The thermokinetic parameters were investigated for cumene hydroperoxide (CHP), di-tert-butyl peroxide (DTBP), and tert-butyl peroxybenzoate (TBPB) by non-isothermal kinetic model and isothermal kinetic model by differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III), respectively. The objective was to investigate the activation energy (E a) of CHP, DTBP, and TBPB applied non-isothermal well-known kinetic equation to evaluate the thermokinetic parameters by DSC. We employed TAM III to assess the thermokinetic parameters of three liquid organic peroxides, obtained thermal runaway data, and then used the Arrhenius plot to obtain the E a of liquid organic peroxides at various isothermal temperatures. In contrast, the results of non-isothermal kinetic algorithm and isothermal kinetic algorithm were acquired from a highly accurate procedure for receiving information on thermal decomposition characteristics and reaction hazard.  相似文献   

12.
A kinetic study on decomposition processes of some penicillin and some commercial drugs was carried out. As expected by the complex structures of penicillins, several steps with different activation energies occurred in their decomposition processes. Model-fitting and model-free kinetic approach were applied to non-isothermal and isothermal data. In the model-fitting methods the kinetic triplets (f(α), A and E a) that defines a single reaction step resulted in being at variance with the multi-step nature of penicillins decomposition. The model-free approach represented by isothermal and non-isothermal isoconversional methods, gave dependences of the activation energies on the extent of conversion. The complex nature of the multi-step process of the studied compounds was more easily revealed using a broader temperature range in non-isothermal isoconversional method. The failure in the model fitting method did not allow calculating storage times. Model-fitting and model-free methods, both isothermal and non-isothermal, showed that F1 mechanism is able to describe decomposition processes for drugs (having Phosphomycin salts as active component) for which a single decomposition process occurs. Statistical analysis allowed us to select reliable kinetic parameters related to the decomposition processes for these last compounds. This procedure showed that the values obtained by extrapolation, outside the temperature range where the processes occurred must be used with caution. Indeed half-life and shelf-life values, commonly extrapoled at room temperature, seemed to be unrealistic. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
多孔物质气固反应动力学研究   总被引:1,自引:0,他引:1  
利用自主研制的微型流化床反应分析仪(MFBRA)在等温条件下测试了高比表面活性炭氧化反应,并根据基于固体转化的热分析动力学方法及考虑气体在微孔内扩散与反应的应用化工动力学方法求算了动力学参数.在内外扩散抑制最小化的实验条件下,粒径小于5μm的活性炭在700-1000℃的燃烧反应动力学研究表明,根据微型流化床中实验数据,采用等温热分析动力学方法求算得内扩散控制区活化能约为95kJ/mol;弓l入化工动力学方法中的随机孔模型对低温区等温燃烧数据拟合,可得孔结构参数在0.17m^-3左右,反应活化能为178kJ/mol,约为内扩散反应活化能的两倍,最为接近本征的碳燃烧反应活化能.  相似文献   

14.
The thermal decomposition of methylammonium perchlorate (MAP) has been studied under isothermal and non-isothermal conditions. Differential thermal analysis of MAP showed, in addition to the exotherm due to decomposition, another exotherm at 408° which was observed for the first time. Chemical analysis and the infrared spectrum of the residue left behind after the decomposition proved it to contain NH4ClO4. The results have been explained on the basis of a methyl group transfer in addition to proton transfer in the decomposition process.  相似文献   

15.
对由水杨醛及其衍生物所形成的Schiff碱配合物的研究已有不少报道,其中一些配合物具有抑菌、抗癌和抗病毒活性,可作为生物氧载体的模型化合物.  相似文献   

16.
采用TG-DTG和DTA技术研究了2,2'-联吡啶-对甲氧基苯甲酸铕(Ⅲ)在静态空气中的非等温热分解过程及动力学,根据TG曲线确定了热分解过程中的中间产物及最终产物,运用微分法与积分法对非等温动力学数据进行分析,推断出第一步的动力学方程为dα/dt=Aexp(-E/RT)2(1-α)1/2.  相似文献   

17.
The thermal decomposition behavior in air of SrC2O4 · 1.25H2O was studied up to the formation of SrO using DTA-TG-DTG techniques. The decomposition proceeds through four well-defined steps. The first two steps are attributed to the dehydration of the salt, while the third and fourth ones are assigned to the decomposition of the anhydrous strontium oxalate into SrCO3 and the decomposition of SrCO3 to SrO, respectively. The exothermic DTA peak found at around 300°C is ascribed to the recrystallization of the anhydrous strontium oxalate. On the other hand, the endothermic DTA peak observed at 910°C can be attributed to the transition of orthorhombic-hexagonal phase of SrCO3. The kinetics of the thermal decomposition of anhydrous strontium oxalate and strontium carbonate, which are formed as stable intermediates, have been studied using non-isothermal TG technique. Analysis of kinetic data was carried out assuming various solid-state reaction models and applying three different computational methods. The data analysis according to the composite method showed that the anhydrous oxalate decomposition is best described by the two-dimensional diffusion-controlled mechanism (D2), while the decomposition of strontium carbonate is best fitted by means of the three-dimensional phase boundary-controlled mechanism (R3). The values of activation parameters obtained using different methods were compared and discussed.  相似文献   

18.
The purpose of this investigation is to calculate the kinetic parameters and the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the ketoprofen—involving active substance’s thermal decomposition—was performed under isothermal conditions and in a nitrogen atmosphere, for the temperature steps: 260; 265; 270; 275; and 280 °C. The thermogravimetry/derivative thermogravimetry data were processed by three differential methods: isothermal–isoconversional, Friedman’s isothermal–isoconversional, and isothermal model-fittings. The obtained results are in good accordance with those obtained under non-isothermal conditions of a previous study, and confirm the necessity for the kinetic parameters to be determined, under different thermal conditions, by the adequate calculation methods.  相似文献   

19.
The application of thermal method is of great importance regarding the pharmaceutical problems such as the control of raw materials, the determination of purity, the qualitative and quantitative analysis of drug formulation, tests of thermal stability and compatibility and the determination of kinetic parameters etc. The purpose of a kinetic investigation is to calculate the kinetic parameters and the determination of the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the piroxicam—active substance’s thermal decomposition was performed under isothermal conditions and nitrogen atmosphere, for the temperature steps: 200, 205, 210, 215 and 220 °C. The TG/DTG data were processed by three differential methods: isothermal—isoconversional, Friedman’s isothermal isoconversional and isothermal model-fitting. The obtained results are in good accord between them, as well as with those obtained under non-isothermal conditions from a previous work and confirm the necessity of the kinetic parameters determining in different thermal conditions, by the adequate calculation methods.  相似文献   

20.
Fourier-transform infrared emission spectroscopy was used to study the dehydroxylation behavior of the thermal decomposition of dickite from Chenxi, Hunan Province, China. Dehydroxylation of dickite was followed by a loss of intensity of the 3620.73, 3695.34 cm-1 OH-stretching bands and 916.06, 1009.33 cm-1 OH bending bands. The thermal decomposition was investigated by thermogravimetric analysis (TGA). A good agreement is found with TG curves of dickite and the mass loss is 13.7% (close to the theoretical value). The non-isothermal kinetics of the thermal decomposition of dickite was studied in TG-DTG curves over the temperature range from 298 K to 1123 K by thermogravimetry and differential thermal analysis in air. Mathematical analysis of TG-DTG data using the integral methods (Coats-Redfern equation, HM equation, MKN equation) and differential method (Achar equation) shows that the thermal decomposition of dickite accords F2 mechanism. The kinetic parameters such as the activation energy (E=131.62 kJ/mol), pre-exponential factor (A=108.30 s-1) and reaction order (n=2.1) are reported. The Ozawa method was used to analyse the activation energy of the same sample at different heating rate and gave 133.07 kJ/mol. The kinetic parameters calculated from different equation are rather close to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号