首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Two-dimensional maps of the spatial distributions of excited and ionized sputtered copper atoms are presented for a millisecond pulsed argon glow discharge. These maps demonstrate the temporal as well as spatial dependence of different excitation and ionization processes over the pulse cycle. Transitions from the low energy electronic states for the atom, characterized by emission such as that at 324.75 nm (3.82→0.00 eV), dominate the plateau time regime at a distance of 2.5 mm from the cathode surface. These processes originate from the electron excitation of ground state copper atoms. Transitions from high-energy electronic states, such as that characterized by emission at 368.74 nm (7.16→3.82 eV), predominate during the afterpeak time regime at a distance of 5.0–6.0 mm from the cathode surface. This observation is consistent with the relaxation of highly excited copper atoms produced by electron recombination with copper ions during the afterpeak time regime. Analyses of afterpeak and plateau intensities for a series of copper emission lines indicate an electron excitation temperature equivalent to 5.78 eV at 0.8 torr and 1.5 W. Temporal profiles exhibit copper ion emission only during the plateau time regime.  相似文献   

2.
A microsecond pulsed glow discharge was produced with high pulse magnitude and small duty cycle. Time resolved emission and absorption spectroscopy was applied to study the processes of atomization, excitation and ionization in the glow discharge. Experimental results show that, without overheating the sample, the emission peak intensity is several orders greater than that obtained in the conventional dc mode. This implies that a much more intense plasma is generated during pulsed "on" region.  相似文献   

3.
Comparative investigations were performed on a Grimm-type glow discharge source by Langmuir probe measurements and by optical emission spectrometry. The Langmuir probe measurements yielded electron temperatures and number densities of electrons, whereas the optical emission spectrometry measurements resulted in data for excitation and ionization temperatures of different species. The results confirm that there is no local thermal equilibrium in the discharge plasma. The operating conditions of the glow discharge source and also the working gas and the cathode material were varied to investigate their influence on the plasma parameters. The outcome of the plasma diagnostics will be used to improve the modelling of relevant excitation and ionization processes by computer simulation. The major physical processes in the low pressure glow discharge plasma should be better understood if the analytical capability of this spectrochemical excitation and ionization source has to be further enhanced.  相似文献   

4.
A Monte Carlo model is utilized for studying the behavior of electrons in the afterglow of an analytical microsecond dc pulsed glow discharge. This model uses several quantities as input data, such as electric field and potential, ion flux at the cathode, the fast argon ion and atom impact ionization rates, slow electron density, the electrical characterization of the pulse (voltage and current profiles) and temperature profile. These quantities were obtained by earlier Monte Carlo — fluid calculations for a pulsed discharge. Our goal is to study the behavior of the so-called Monte Carlo electrons (i.e., those electrons created at the cathode or by ionization collisions in the plasma which are followed by using the Monte Carlo model) from their origin to the moment when they are absorbed at the cell walls or when they have lost their energy by collisions (being transferred to the group of slow electrons) in the afterglow of the pulsed discharge. The thermalization of the electrons is a phenomenon where the electron-electron Coulomb collisions acquire a special importance. Indeed, in the afterglow the cross sections of the other electron reactions taken into account in the model are very low, because of the very low electron energy. We study the electron energy distributions at several times during and after the pulse and at several positions in the plasma cell, focusing on the thermalization and on the behavior of the electrons in the afterglow. Also, the time evolution of the rates of the various collision processes, the average electron energy, the densities of Monte Carlo and slow electrons and the ionization degree are investigated.  相似文献   

5.
Glow Discharge (GD) spectroscopy is a well known and accepted technique for the bulk and surface composition analysis, while laser ablation (LA) provides analysis with high spatial-resolution analysis in LIBS (laser-induced breakdown spectroscopy) or when coupled to inductively coupled plasma spectrometry (ICP-OES or ICP-MS). This work concerns the construction of a Laser Ablation Glow Discharge Time-Of-Flight Mass Spectrometry (LA-GD-TOFMS) instrument to study the analytical capabilities resulting from the interaction of a laser-generated sample plume with a pulsed glow discharge. Two ablation configurations were studied in detail. In a first approach, the laser-generated plume was introduced directly into the GD, while the second approach generated the plume inside the GD. The ablated material was introduced at different times with respect to the discharge pulse in order to exploit the efficient ionization in the GD plasma. For both LA-GD configurations, direct ablation into the afterglow of the pulsed glow discharge leads to an ion signal enhancement of up to a factor of 7, as compared to the ablation process alone under the same experimental conditions. The LA-GD enhancement was found to occur exclusively in the GD afterglow, with a maximum ablation S/N occurring in a few hundred microseconds after the termination of the glow discharge. The duration of the enhanced signal is about two milliseconds. Both the laser pulse energy and the position of the ablation plume (with respect to the sampling orifice) were found to affect the amount of mass entering the afterglow region and consequently, the enhancement factor of ionization.  相似文献   

6.
The synthesis of the intramolecularly coordinated heteroleptic organostannylene tungsten pentacarbonyl complexes 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn(X)W(CO)(5) (1, X = Cl; 2, X = F; 3, X = PPh(2)) and of 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn[W(CO)(5)]PPh(2)[W(CO)(5)], 4, are reported. UV-irradiation of compound 4 in tetrahydrofurane serendipitously gave the bis(organostannylene) tungsten tetracarbonyl complex cyclo-O(2)W[OSn(R)](2)W(CO)(4) (R = 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)), 5, that contains an unprecedented W(0)-Sn-O-W(vi) bond sequence. The compounds 1-5 were characterized by means of single crystal X-ray diffraction analysis, (1)H, (13)C, (19)F, (31)P, (119)Sn NMR, and IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. Compound 4 features a hindered rotation about the Sn-P bond.  相似文献   

7.
A microsecond pulsed glow discharge was produced with high pulse magnitude and small duty cycle. Time resolved emission and absorption spectroscopy was applied to study the processes of atomization, excitation and ionization in the glow discharge. Experimental results show that, without overheating the sample, the emission peak intensity is several orders greater than that obtained in the conventional dc mode. This implies that a much more intense plasma is generated during pulsed on region.  相似文献   

8.
A hollow cathode configuration was designed for a Grimm-type glow discharge atomic emission spectrometer (GD-AES). The operating conditions including the hollow cathode dimension, applied pulsed voltage and argon pressure, were optimized. The 10-μs pulses at 1.8 kV in a 3-torr discharge worked best. A pulsed hollow cathode Grimm discharge (HCG) offers several advantages: efficient excitation and ionization; high sensitivity; temporal spectral resolution; and rapid sample interchange. The capability of this source for the determination of elemental composition in metals, alloys and in solution residues is investigated. Samples used in this study included copper and steel standards.  相似文献   

9.
A new model for microsecond pulsed glow discharge in a hollow cathode and its afterglow is described. The model is based on the Monte-Carlo method together with a new method for electrical field calculation, which is based on some phenomenological laws of plasma behavior. The afterglow model uses continuity and Poisson equations. A qualitative agreement between the model results and results published in experimental and theoretical works is demonstrated. Some processes in the microsecond pulsed discharge in the hollow cathode, such as sputtering, ionization and transfer of sample, are investigated. The model is successfully used for the optimization of the operational parameters of the time-of-flight mass spectrometer with ionization by microsecond pulsed glow discharge in a hollow cathode.  相似文献   

10.
The characters, dynamics, and relaxation pathways of low-lying excited states of the complexes [W(CO)(5)L] [L = 4-cyanopyridine (pyCN) and piperidine (pip)] were investigated using theoretical and spectroscopic methods. DFT calculations revealed the delocalized character of chemically and spectroscopicaly relevant molecular orbitals and the presence of a low-lying manifold of CO pi-based unoccupied molecular orbitals. Traditional ligand-field arguments are not applicable. The lowest excited states of [W(CO)(5)(pyCN)] are W --> pyCN MLCT in character. They are closely followed in energy by W --> CO MLCT states. Excitation at 400 or 500 nm populates the (3)MLCT(pyCN) excited state, which was characterized by picosecond time-resolved IR and resonance Raman spectroscopy. Excited-state vibrations were assigned using DFT calculations. The (3)MLCT(pyCN) excited state is initially formed highly excited in low-frequency vibrations which cool with time constants between 1 and 20 ps, depending on the excitation wavelength, solvent, and particular high-frequency nu(CO) or nu(CN) mode. The lowest excited states of [W(CO)(5)(pip)] are W --> CO MLCT, as revealed by TD-DFT interpretation of a nanosecond time-resolved IR spectrum that was measured earlier in a low-temperature glass (Johnson, F. P. A.; George, M. W.; Morrison, S. L.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1995, 391-393). MLCT(CO) excitation involves transfer of electron density from the W atom and, to a lesser extent, the trans CO to the pi orbitals of the four cis CO ligands. Optical excitation into MLCT(CO) transition of either complex in fluid solution triggers femtosecond dissociation of a W-N bond, producing [W(CO)(5)(solvent)]. It is initially vibrationally excited both in nu(CO) and anharmonicaly coupled low-frequency modes. Vibrational cooling occurs with time constants of 16-22 ps while the intramolecular vibrational energy redistribution from the v = 1 nu(CO) modes is much slower, 160-220 ps. No LF excited states have been found for the complexes studied in a spectroscopically relevant range up to 6-7 eV. It follows that spectroscopy, photophysics, and photochemistry of [W(CO)(5)L] and related complexes are well described by an interplay of close-lying MLCT(L) and MLCT(CO) excited states. The high-lying LF states play only an indirect photochemical role by modifying potential energy curves of MLCT(CO) states, making them dissociative.  相似文献   

11.
The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).  相似文献   

12.
A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas.  相似文献   

13.
An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N2+ 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed.  相似文献   

14.
We explore electron dynamics in molecular (CD4)(1061) clusters and elemental Xen (n=249-2171) clusters, responding to ultraintense (intensity I=10(16)-10(19) W cm(-2)) laser fields. Molecular dynamics simulations (including magnetic field and relativistic effects) and analyses of high-energy electron dynamics and nuclear ion dynamics in a cluster interacting with a Gaussian shaped laser field (frequency 0.35 fs(-1), photon energy 1.44 eV, phase 0, temporal width 25 fs) elucidated the time dependence of inner ionization, the formation of a nanoplasma of unbound electrons within the cluster or its vicinity, and of outer ionization. We determined the cluster size and the laser intensity dependence of these three sequential-parallel electronic processes. The characteristic times for cluster inner ionization (tau(ii)) and for outer ionization (tau(oi)) fall in the femtosecond time domain, i.e., tau(ii)=2-9 fs and tau(oi)=4-15 fs for (CD4)(1061), tau(ii)=7-30 fs and tau(oi)=5-13 fs for Xe(n) (n=479,1061), with both tau(ii) and tau(oi) decreasing with increasing I, in accord with the barrier suppression ionization mechanism for inner ionization of the constituents and the cluster barrier suppression ionization mechanism for outer ionization. The positive delay times Deltatau(OI) between outer and inner ionization (e.g., Deltatau(OI)=6.5 fs for Xen at I=10(16) W cm(-2) and Deltatau(OI)=0.2 fs for (CD4)(1061) at I=10(19) W cm(-2)) demonstrate that the outer/inner ionization processes are sequential. For (CD4)(1061), tau(ii)tau(oi), reflecting on the energetic hierarchy in the ionization of the Xe atoms. Quasiresonance contributions to the outer ionization of the nanoplasma were established, as manifested in the temporal oscillations in the inner/outer ionization levels, and in the center of mass of the nanoplasma electrons. The formation characteristics, dynamics, and response of the nanoplasma in molecular or elemental clusters were addressed. The nanoplasma is positively charged, with a high-average electron density [rho(P)=(2-3)10(22) cm(-3)], being characterized by high-average electron energies epsilon(av) (e.g., in Xe(1061) clusters epsilon(av)=54 eV at I=10(16) W cm(-2) and epsilon(av)=0.56-0.37 keV at I=10(18) W cm(-2), with epsilon(av) proportional, variant I(1/2)). Beyond the cluster boundary the average electron energy markedly increases, reaching electron energies in the range of 1.2-40 keV for outer ionization of Xe(n) (n=249-2171) clusters. The nanoplasma exhibits spatial inhomogeneity and angular anisotropy induced by the laser field. Femtosecond time scales are predicted for the nanoplasma production (rise times 7-3 fs), for the decay (decay times approximately 5 fs), and for the persistence time (30-10 fs) of a transient nanoplasma at I=10(17)-10(18) W cm(-2). At lower intensities of I=10(16) W cm(-2) a persistent nanoplasma with a "long" lifetime of > 50 fs will prevail.  相似文献   

15.
A microsecond-pulsed glow discharge is used to excite ablate material generated by the ablation laser in Laser-induced Breakdown Spectrometry (LIBS). The coupled system provides a simple means to excite the material ablated by the incident laser pulse by taking advantage of enhanced collisional excitation. In this way, one can effectively reduce laser energies below the excitation and ionization thresholds to those needed solely for ablation of the sample surface, in which the excitation of the material is performed by a high voltage discharge. Given this development, there exists the potential of improving upon depth resolutions in LIBS material characterization. This article presents the results of a comparative depth profile study conducted on various galvanized steels and layered brass standards by LIBS and GD-LIBS; demonstrating the advantages of coupling a pulsed glow discharge with a typical LIBS set-up used in materials analysis.  相似文献   

16.
The distribution Pε of internal energies deposited in W(CO)6 +?. ions upon charge stripping (that is, electron detachment to yield the doubly charged ion in the course of a single kiloelec-tronvolt energy collision) was estimated by a thermochemical method from the measured relative abundances of the doubly charged fragment ions produced. The thermochemical information needed to estimate P/ge was obtained by measuring the threshold translational energy losses associated with charge stripping of the singly charged fragment ions, W(CO) n + (n = 0-5). The P(/ge) curve falls exponentially with increasing internal energy. The average energy transferred to W(CO)6 +? upon a 7.8-keV collision with O2 is 19 eV, yielding W(CO)6 2? ions with an average of 4 eV of internal energy. In its general appearance, the P(ε) distribution associated with charge stripping is similar to the curves obtained from simple collisional activation of either W(CO) 6 +?. or W(CO)6 2+? in kiloelectronvolt energy gaseous collisions. Given that charge stripping occurs by way of an electronic excitation process, this similarity in the energy deposition function is taken to indicate that electronic excitation is also the major mechanism for simple collisional activation in this system at zero scattering angle in the kiloelectronvolt energy regime. The internal energy distribution associated with a related charge-stripping process, charge inversion from the metal carbonyl anions to yield the corresponding cations, was also recorded. This reaction shows a large (~7 eV) average internal energy deposition with a distribution that indicates near-zero probability of formation of unexcited ions. These data are tentatively interpreted in terms of vibrationalelectron detachment. The internal energy distribution associated with an exothermic process, charge exchange [W(CO)6 2+? + O2 → W(CO) + 6?+O2 +?], was also characterized. Unexpectedly strong coupling of translational to internal energy is observed, and there is a large probability of depositing internal energies in excess of 10 eV, even though the exothermicity is only 3 eV. Finally, the internal energy distributions associated with the formation of doubly charged W(CO)6 2+? ions by electron ionization have been measured. Unlike the distribution for charge stripping, but like that for singly charged ions generated by electron impact, this distribution shows considerable structure, presumably due to Franck-Condon factors.  相似文献   

17.
Non equilibrium plasmas such as glow discharges have become a commonly used tool in direct surface and interface analysis of solid materials. The application of pulsed glow discharges to material analysis has been studied by several research groups over the last 20 years. Two European projects, EMDPA and GLADNET currently work on the analytical applications of glow discharges, giving a particular attention to pulsed discharges. This review demonstrates the advantages of pulsed discharge operation by showing how the specific excitation and ionisation processes observed during the plasma ignition phase and the afterglow can be used for analytical applications.  相似文献   

18.
Doubly charged tungsten hexacarbonyl W(CO)(6) (2+) ions were made to collide with Ar and K targets to give singly and doubly charged positive ions by collision-induced dissociation (CID). The resulting ions were analyzed and detected by using a spherical electrostatic analyzer. Whereas the doubly charged fragment ions resulting from collisional activation (CA) were dominant with the Ar target, singly charged fragment ions resulting from electron transfer were dominant with the K target. The internal energy deposition in collisionally activated dissociation (CAD) evaluated with the Ar target was broad and decreased with increasing internal energy. The predominant peaks observed with the K target were associated with singly charged W(CO)(2) (+) and W(CO)(3) (+) ions: these ions were not the result of CA, but arose from dissociation induced by electron transfer (DIET). The internal energy deposition resulting from the electron transfer was very narrow and centered at a particular energy, 7.8 eV below the energy level of the W(CO)(6) (2+) ion. This narrow internal energy distribution was explained in terms of electron transfer by Landau-Zener potential crossing at a separation of 5.9 x 10(-8) cm between a W(CO)(6) (2+) ion and a K atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of 1.1 x 10(-14) cm(2) was estimated for electron capture of the doubly charged W(CO)(6) (2+) ion from the alkali metal target, whose ionization energy is very low. The term "collision-induced dissociation," taken literally, includes all dissociation processes induced by collision, and therefore encompasses both CAD and DIET processes in the present work. Although the terms CID and CAD have been defined similarly, we would like to propose that they should not be used interchangeably, on the basis that there are differences in the observed ions and in their intensities with Ar and K targets.  相似文献   

19.
The internal energy distributions P(ε) transferred to W(CO)+√6 during the kiloelectronvolt collisions that occur upon neutralization-reionization (NR) have been estimated based on the relative abundances of the W(CO)+√0−6 products present in NR spectra (thermochemical method). The average internal energy of the incipient W(CO)+√6 * ions arising after near thermoneutral neutralization with trimethylamine followed by reionization with O2 is −9 eV for 8-keV precursor ions and is mainly deposited during reionization. For comparison, the mean internal energy of W(CO)+√6* after electron ionization (EI) or collisionally activated dissociation (CAD) is −6 eV. Making the neutralization step endothermic slightly increases the overall excitation gained; however, a large increase in endothermicity ( > 16 eV) causes only a modest rise of the average internal energy (< 2 eV). The P(ε) curve for NR increases exponentially up to 6 eV and levels off at higher energies, showing that the probability of imparting large internal energies (6–17 eV) is high. In sharp contrast, the most probable excitation on CAD is ≤ 6 eV, and the probability of deposition of larger energies declines exponentially. The mean internal energies after CAD and NR decrease steadily when the kinetic energy is lowered. The structure (minima-maxima) observed in the P(ε) distribution for EI, which most likely originates from Franck-Condon factors, is not reproduced in the distributions for NR or high energy CAD, despite the fact that all three methods involve electronic excitation. Because of the large internal energies transferred upon NR, NR mass spectrometry could be particularly useful in the differentiation of ionic isomers with high dissociation but low isomerization thresholds. (J Am Soc Mass Spectrom 1994, 5, 1093-1101)  相似文献   

20.
The pulsed power operation mode of a radiofrequency (rf) glow discharge time‐of‐flight mass spectrometer was investigated, for several ions, in terms of intensity profiles along each pulse period. Particular attention was paid to the plateau and transient afterglow regions. An rf pulse period of 4 ms and a duty cycle of 50% was selected to evaluate the influence of discharge parameters in the afterglow delay and shape of Ar+, Ar2+ and several analytes (Br, Cl, Cu) contained in polymeric layers. Pulse shapes of Ar+ and Ar2+ ions vary with pressure and power. At low pressures the highest intensity is observed in the plateau while at higher pressures (>600 Pa) the afterpeak is the dominant region. Although the influence of the applied power is less noticeable, a widening of the afterglow time regime occurs for Ar+ when increasing the power. Maximum intensity of the argon signal is measured in the afterglow at 30 W, while the area of such afterpeak increases with power. The maximum intensity of Ar2+ is obtained at the highest power employed (60 W) and the ratio maximum intensity/afterglow area remains approximately constant with power. Analytes with ionization potentials below (Cu) or just above (Br) the argon metastable energy show maxima intensities after argon ions decay, indicating they could be ionized by collisions with metastable Ar atoms. Chlorine signals are observed in the afterglow despite their ionization potential is well above the energy of argon metastable levels. Moreover, they follow a similar pattern to that observed for Ar2+, indicating that charge‐transfer process with Ar2+ could play a significant role. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号