首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
This paper deals with the anti-plane problem of two bonded functionally graded finite strips. Each strip contains an internal crack normal to the interface. The material properties of two strips are assumed to vary along the direction of the crack lines. A system of singular integral equations is derived and then solved numerically by using Gauss–Chebyshev integration formula. The influences of nonhomogeneous parameters, crack interactions and two edge conditions on the mode III stress intensity factors are investigated.  相似文献   

2.
Consider two bonded functionally graded piezoelectric material (FGPM) with finite height. Each material contains an arbitrary oriented crack. The material properties are assumed in exponential forms in the direction normal to the interface. The crack surface condition is assumed to be electrically impermeable or permeable. Using the Fourier transform technique, the problem can be reduced to a system of singular integral equations, which are then solved numerically by applying the Gauss-Chebyshev integration formula to obtain the stress intensity factors at the crack tips. Numerical calculations are carried out to obtain the energy density factor S and the energy release rate G. In impermeable case, the energy release rate has been shown to be negative as the electric loads are applied. The positive definite characteristic of the energy density factor makes it possible for predicting the fracture behavior of the cracked structure. The influences of the non-homogeneous parameters and crack orientation on the energy density factors at the crack tips are discussed in detail. The results show that the energy density factor at the crack tip will be increased when the crack tip is located within the softer material.  相似文献   

3.
The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin Transforms the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given in the paper include the stress intensity factors, the strain energy release rates, and the probable cleavage angles giving the direction of crack propagation.  相似文献   

4.
This paper studies the mode III crack problem of two bonded functionally graded piezoelectric half planes which contain a crack respectively. These two cracks are located normal to the interface. All the material properties are assumed to vary along the direction of the crack line. A system of singular integral equations for electrically impermeable and permeable cracks is derived and solved numerically by using the Gauss–Chebyshev integration formula. The influence of the nonhomogeneous parameters and the dependence of the crack interactions on the stress and electric displacement intensity factors are investigated.  相似文献   

5.
IntroductionDuetotheintrinsicelectro_mechanicalcouplingbehavior,piezoelectricmaterialsareveryusefulinelectronicdevices.However,mostpiezoelectricmaterialsarebrittlesuchasceramicsandcrystals.Therefore ,piezoelectricmaterialshaveatendencytodevelopcriticalcracksduringthemanufacturingandthepolingprocesses.So ,itisimportanttostudytheelectro_elasticinteractionandfracturebehaviorsofpiezoelectricmaterials.Theincreasingattentiontothestudyofcrackproblemsinpiezoelectricmaterialshasledtoalotofsignificantw…  相似文献   

6.
Some composite materials are constructed of two dissimilar half-planes bonded by a nonhomogeneous elastic layer. In the present study, a crack is situated at the interface between the upper half-plane and the bonding layer of such a material, and another crack is located at the interface between the lower half-plane and the bonding layer. The material properties of the bonding layer vary continuously from those of the lower half-plane to those of the upper half-plane. Incoming shock stress waves impinge upon the two interface cracks normal to their surfaces. Fourier transformations were used to reduce the boundary conditions for the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded in a series of functions that are zero-valued outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.  相似文献   

7.
This work deals with the mode III fracture problem of a cracked functionally graded piezoelectric surface layer bonded to a cracked functionally graded piezoelectric substrate. The cracks are normal to the interface and the electro-elastic material properties are assumed to be varied along the crack direction. Potential and flux types of boundary condition are assigned on the edge of the surface layer. The problem under the assumptions of impermeable and permeable cracks can be formulated to the standard singular integral equations, which are solved by using the Gauss–Chebyshev technique. The effects of the boundary conditions, the material properties and crack interaction on the stress and electric displacement intensity factors are discussed.  相似文献   

8.
This paper investigates the singular electromechanical field near the crack tips of an internal crack. The crack is perpendicular to the interface formed by bonding two half planes of different functionally graded piezoelectric material. The properties of two materials, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The singular integral equations for impermeable and permeable cracks are derived and solved by using the Gauss–Chebyshev integration technique. It shows that the stresses and electrical displacements around the crack tips have the conventional square root singularity. The stress intensity and electric displacement intensity factors are highly affected by the material nonhomogeneity parameters β and γ. The solutions for some degenerated problems can also be obtained.  相似文献   

9.
Summary  Plane elasticity solutions are presented for the problem of an oblique crack in two bonded media. The material model under consideration consists of a homogeneous half-plane with an arbitrarily oriented crack and a nonhomogeneous half-plane. The Fourier integral transform method is employed in conjunction with the coordinate transformations of field variables in the basic elasticity equations. Formulation of the crack problem results in having to solve a system of singular integral equations for arbitrary crack surface tractions. A crack perpendicular to or along the bonded interface between the homogeneous and nonhomogeneous constituents arises as a limiting case. In the numerical results, the values of mixed-mode stress intensity factors are provided for various combinations of relevant geometric and material parameters of the bonded media. Subsequently, the infinitesimal kinks from the tips of a main crack are presumed, with the corresponding local driving forces being evaluated in terms of the stress intensities of the main crack. The criterion of maximum energy release rate is applied with the aim of making some conjectures concerning the likelihood of kinking and the probable kink direction based on the approximation of local homogeneity and brittleness of the crack-tip behavior. Received 25 September 2001; accepted for publication 13 February 2002  相似文献   

10.
The mechanical model was established for the anti-plane dynamic fracture problem for two collinear cracks on the two sides of and perpendicular to a weak-discontinuous interface between two materials with smoothly graded elastic properties, as opposed to a sharp interface with discontinuously changing elastic properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. The integral equations were solved by Erdogan's collocation method and the dynamic stress intensity factors in the time domain were obtained through Laplace numerical inversion proposed by Miller and Guy. The influences of geometrical and physical parameters on the dynamic stress intensity factors were illustrated and discussed, based on which some conclusions were drawn: (a) to increase the thickness of the FGM strip on either side of the interface will be beneficial to reducing the DSIF of a crack perpendicular to a bi-FGM interface and embedded at the center of one of the FGM strips; (b) To increase the rigidity of the FGM strip where the crack is located will increase the DSIF. However, when the material in one side of the interface is more rigid, the DSIF of the interface-perpendicular embedded crack in the other side will be reduced; (c) To decrease the weak-discontinuity of a bi-FGM interface will not necessarily reduce the stress intensity factor of a crack perpendicular to it, which is different from the case of interfacial crack; (d) For two collinear cracks with equal half-length, when the distance between the two inner tips is less than about three times of the half-length, the interaction of them is intensified, however, when the distance is greater than this the interaction becomes weak.  相似文献   

11.
Yuli  Gao  Yizhong  Lu 《Acta Mechanica Sinica》1986,2(2):158-168
Crack problems for isotropic/orthotropic two-layered strips have been investigated. A system of two singular integral equations can be derived by using Fourier integral transformation and boundary conditions of crack problems. After stress singularities at crack tips or other special points are determined for internal and edge cracks, and for cracks terminating at and going through the interface, the system of singular integral equations is solved numerically by Gauss-Jacobi or Gauss-Chebyshev integration formulas for stress intensity factors at the tips and other singular points of cracks. Finally, possible crack growth behavior for cracks approaching and going through the interface is discussed.  相似文献   

12.
The behavior of four parallel symmetry permeable interface cracks in a piezoelectric layer bonded to two half-piezoelectric spaces under anti-plane shear loading is investigated. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved by the Schmidt method. This process is quite different from that papers adopted previously. The normalized stress and electrical displacement intensity factors are determined for different geometric and property parameters for permeable crack surface conditions. Numerical examples are provided to show the effect of the geometry of the interacting cracks, the thickness and the materials constants of the piezoelectric layer upon the stress and electric displacement intensity factors of the cracks. It is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than the results for the impermeable crack surface conditions.  相似文献   

13.
This paper studies the Mode III electric-elastic field of a cracked functionally graded piezoelectric strip bonded to a homogeneous piezoelectric half plane. The crack is oriented in arbitrary direction. The material properties of the strip vary along the strip thickness in exponential forms. By using the Fourier transform, the problem can be formulated to a system of singular integral equations and solved by applying the Gauss-Chebyshev integration formula. The effects come from the edge, crack orientations and the nonhomogeneous material parameter on intensity factors are discussed graphically.  相似文献   

14.
In this paper, the plane elasticity problem of an arbitrarily oriented crack in a FGM layer bonded to a homogeneous half-plane is considered. The problem is modeled by assuming that the elastic properties of the FGM layer are exponential functions of the thickness coordinate and are continuous at the interface of the FGM layer and the half-plane.The Fourier transform technique is used to reduce the problem to the solution of a system of Cauchy-type singular integral equations, which are solved numerically. The stress intensity factors are computed for various crack orientations, crack locations and material parameters. The results show that crack length, crack orientation and the non-homogeneity parameter of the strip material have significant effect on the fracture of the FGM layer.  相似文献   

15.
The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated. By using the Fourier transform, the problem can be solved with the help of a pair of triple integral equations in which the unknown variable is jump of displacement across the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter, the circular frequency of the incident waves and the thickness of the strip upon stress, electric displacement and magnetic flux intensity factors of cracks.  相似文献   

16.
This paper studies the mode III electro-elastic field of a cracked functionally graded piezoelectric strip bonded to a functionally graded piezoelectric half plane. The crack is oriented in arbitrary direction. The material properties along x-axis vary in exponential form. By using the Fourier transform, the problem can be formulated into a system of singular integral equations and solved by applying the Gauss–Chebyshev integration formula. The effects come from the edge, crack orientation and the nonhomogeneous material parameters on intensity factors are discussed graphically.  相似文献   

17.
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations ip which the unknown variables are the jumps of displacements across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.  相似文献   

18.
In this paper, the dynamic anti-plane crack problem for two bonded functionally graded piezoelectric materials is considered. The crack is perpendicular to the interface and assumed to be electrically impermeable or permeable. Integral transforms are employed to reduce the problem to Cauchy singular equations that can be solved numerically. The effects of the loading parameter λ, material constants and the geometry parameters on the stress intensity factor and the energy density factor are studied. It is found that for the impermeable case, the normalized dynamic stress intensity factor may increase or decrease in different time domains determined by the sign and magnitude of λ.  相似文献   

19.
M. S. Matbuly 《Meccanica》2009,44(5):547-554
The present work concerns with the multiple crack propagation along the interface of two bonded dissimilar strips. The crack faces are subjected to anti-plane shear traction. Galilean transformation is employed to reduce the problem to a quasi-static one. Then, using Fourier transforms and asymptotic analysis, the quasi-static problem is reduced to a pair of singular integral equations. That are solved numerically, using Gauss-Chebyshev integration formulae. The values of the dynamic stress intensity factors are obtained and compared with the previous similar works. Further, a parametric study is introduced to investigate the effect of crack growth rate, geometric and elastic characteristics of the composite on the values of dynamic stress intensity factors.  相似文献   

20.
本文研究了面内电磁势载荷作用下双层压电压磁复合材料中共线界面裂纹问题.考虑了压电材料的导磁性质和压磁材料的介电性质,引入了界面电位移和磁感强度的连续性条件.利用Fourier 变换得到一组第二类Cauchy 型奇异积分方程.进一步导出了相应问题的应力强度因子、电位移强度因子和磁感强度强度因子的表达式,给出了应力强度因子的数值结果.结果表明电磁载荷会导致界面裂纹尖端I、II 混合型应力奇异性,同时还伴随着电位移和磁感强度的奇异性.比较了双裂纹左右端的应力强度因子,发现在面内极化方向上施加面内磁势载荷时共线裂纹内侧尖端区域的两个法向应力场发生互相干涉增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号