首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A rapid, sensitive and automated in-tube solid-phase microextraction-liquid chromatography-mass spectrometry (in-tube SPME/LC-MS) method was developed for the analysis of ten antidepressants in urine and plasma. A hybrid organic-inorganic silica monolith with cyanoethyl functional groups was prepared and used as a sorbent for in-tube SPME. Integration of the sample extraction, LC separation and MS detection into a single system permitted direct injection of the diluted urine or plasma after filtration. Under the optimized conditions, good extraction efficiencies for the targets were obtained with no matrix interference in the subsequent LC-MS. Automation of the sampling, extraction and separation procedures was realized under the control of a program in this study. The total process time was 30 min and only 30 μL of urine or plasma was required in one analysis cycle. Good linearities were obtained for ten antidepressants with the correlation coefficients (R) above 0.9933. The limits of detection (S/N=3) for ten antidepressants were found to be 0.06-2.84 ng/mL in urine and 0.07-2.95 ng/mL in plasma. The recoveries of antidepressants spiked in urine and plasma were from 75.2% to 113.0%, with relative standard deviations less than 16.5%. The developed method was successfully used to analyze urine sample from ageing patients undergoing therapy with antidepressants.  相似文献   

2.
A solid-phase microextraction (SPME) method has been developed for the determination of 3 chloroacetanilide herbicides in both fresh and seawater samples. The extracted sample was analyzed by gas chromatography with mass spectrometry detection (GC-MS), and parameters affecting SPME operation including fibre type, sample pH, sample temperature, mixing speed and extraction time have been evaluated and optimized. The amount of dissolved organic matter (DOM) and the salt content both affected SPME extraction efficiency, but the presence of other competitive extractants such as organochlorine pesticides (OCPs) in the matrix showed no insignificance interference. The limit of detection (LOD) for acetochlor, metolachlor and butachlor were 1.2, 1.6 and 2.7 ng L−1, respectively. The recoveries for the herbicides ranged from 79 to 102%, and the linear dynamic range was from 10 to 1000 ng L−1. The developed method has been used to monitor herbicides contaminations in coastal water samples collected around Laizhou bay and Jiaozhou bay in Shandong peninsula, China. The concentrations of acetochlor and metolachlor ranged from undetectable to 78.5 ng L−1 and undetectable to 35.6 ng L−1, respectively. Butachlor was not observed but in only one sample and the concentration is lower than the limit of quantification (LOQ). The concentrations of the three herbicides in this study are low compared to most of the other places reported.  相似文献   

3.
A novel solid-phase microextraction (SPME) method based on molecularly imprinted polymer (MIP) monolith as the sorbent for the selective extraction of thiamphenicol (TAP) in milk and honey was developed. The newly developed MIP monolith was produced using TAP as the template molecule, 4-vinylpyridine (4-VP) as the functional monomer. The TAP-MIP monolith synthesized in a micropipette tip could be connected with syringes in different sizes simply to perform SPME process without any other treatment. The derivated MIP monolith showed high selectivity and enrichment ability for TAP. A simple, rapid and sensitive method for the determination of TAP in milk and honey using polymer monolith microextraction (PMME) based on the MIP monolith combined with high-performance liquid chromatography-photodiodes array detector was developed. Several parameters affecting MIP monolith microextraction were investigated, including the flow rate, volume, pH and salt concentration of sample, the type and volume of washing solution, the type and flow rate of eluent. The recovery of this method for TAP was investigated and high recoveries of 92.9-99.3% from milk and honey were obtained with relative standard deviations less than 4.9%.  相似文献   

4.
A novel sorbent, dihydroxylated polymethylmethacrylate (DHPMM), coated on hollow-fiber membrane, is used for the polymer-coated hollow-fiber microextraction of trace amounts of natural and synthetic estrogens, such as diethylstilbestrol, estrone, 17beta-estradiol and 17alpha-ethynylestradiol, in aqueous samples. In this procedure, estrogens were extracted using the functionalized polar DHPMM polymer with derivatization using N-methyl-N-(trimethylsilyl)trifluoroacetamide followed by gas chromatography-mass spectrometric analysis. The detection limits for estrogens in aqueous sample were between 0.03 and 0.8 ng l(-1) and the calibration curves were linear over the concentration range 0.05-10 microgl(-1) and had correlation coefficients of >0.994. The relative standard deviations (RSDs) were <15% (n = 3). This simple, accurate, sensitive and selective analytical method is applicable to the determination of trace amounts of estrogens in reservoir and potable water samples.  相似文献   

5.
建立了分散液相微萃取.气相色谱,质谱快速分析水中硝基苯、对硝基苯、1,3一二硝基苯和2,4-二硝基氯苯的新方法.将含有18μL氯苯(萃取荆)的0.25 mL丙酮(分散剂)作为萃取体系,快速注入到5.0 mL水溶液中.在4000r/min下离心2.0 min后,得到(10.0±0.5)μL沉积相(氯苯),取底部沉积相1.0μL进行气相色谱,质谱分析.方法线性范围0.5~50μg/L(r2=0.9986~0.9994),检出限0.2~0.5μg/L,相对标准偏差4.2%~7.3%(n=5).将该方法用于环境水样的测定,加标回收率72.9%~89.6%.  相似文献   

6.
A simple, rapid, and sensitive method for the determination of traces of thirteen sulfonamide antibacterials in milk and eggs is presented. This method is based on the combination of polymer monolith microextraction (PMME) technique with hydrophilic interaction chromatography/mass spectrometry (HILIC/MS). The extraction was performed with a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column while the subsequent separation was carried out on a Luna NH2 column by HILIC. To obtain optimum results, several parameters relating to HILIC and PMME were investigated. After optimization, acetonitrile (contain 0.05% formic acid, v/v) was used as the elution solution, which was well compatible with the mobile phase in HILIC. Good linearities were obtained for thirteen SAs with the correlation coefficients (R2) above 0.997. The limits of detection (S/N = 3) of the method were found to be 0.4–5.7 ng mL−1 of SAs in whole milk and 0.9–9.8 ng g−1 of SAs in eggs. The recoveries of thirteen SAs in two matrices ranged from 80.4 to 119.8%, with relative standard deviations less than 11.8%.  相似文献   

7.
A rapid and solvent‐free procedure for the determination of 4‐tert‐octylphenol and 4‐nonylphenol isomers in aqueous samples is described. The method involves in‐situ acetylation and microwave‐assisted headspace solid‐phase microextraction prior to their determination using gas chromatography–ion trap mass spectrometry operated in the selected ion storage mode. The dual experimental protocols to evaluate the effects of various derivatization and extraction parameters were investigated and the conditions optimized. Under optimized conditions, 300 μL of acetic anhydride mixed with 1 g of potassium hydrogencarbonate and 2 g of sodium chloride in a 20 mL aqueous sample were efficiently extracted by a 65 μm polydimethylsiloxane‐divinylbenzene fiber that was located in the headspace when the system was microwave irradiated at 80 W for 5 min. The limits of quantitation were 5 and 50 ng/L for 4‐tert‐octylphenol and 4‐nonylphenol isomers, respectively. The precision for these analytes, as indicated by relative standard deviations, were less than 8% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 74 to 88%. A standard addition method was used to quantitate 4‐tert‐octylphenol and 4‐nonylphenol isomers, and the concentrations ranged from 120 to 930 ng/L in various environmental water samples.  相似文献   

8.
张建华  黄颖  陈晓秋  陈金花  李辉  陈国南 《色谱》2009,27(6):799-803
建立了简便、快速、有效的分散液-液微萃取-高效液相色谱-荧光检测(DLLME-HPLC-FLD)测定环境水样中15种多环芳烃(PAHs)的方法。重点探讨了萃取剂的种类和用量、分散剂的种类和用量以及萃取时间等对PAHs萃取效率的影响。在优化的条件下,评价了方法的可靠性。15种PAHs在0.01~10 μg/L范围内呈良好的线性关系,相关系数r均不小于0.9913,峰面积的相对标准偏差(RSD)在2.3%~4.7%之间(n=6)。在优化条件下,富集因子和萃取回收率良好,分别为674~1032和67.4%~103.2%,15种PAHs的检出限(S/N=3)在0.0003~0.002 μg/L之间。建立的方法应用于敖江水样中PAHs的检测,平均加标回收率在79.5%~92.3%之间,RSD在4.3%~6.7%范围内(n=5)。该方法适用于环境水样中痕量PAHs的分析。  相似文献   

9.
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 μL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 °C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 μL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n = 8), and the detection limits were in the range of 1-25 ng L−1. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.  相似文献   

10.
In this study, a polymer monolith microextraction (PMME) using a poly (methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith in conjunction with high-performance liquid chromatography (HPLC) was developed for the determination of 2,4-dinitrophenylhydrazine (DNPH) derivatives of several aldehydes in human saliva. The conditions for the labeling reactions of aldehydes with DNPH and followed extraction of the derivatives were optimized. The precision, recovery and detection limits were evaluated with spiked saliva. The limits of detection ranged from 0.43 to 1.40 μg/L. The inter-and intra-day relative standard deviations were less than 10%. The proposed method was successfully applied to the determination of aldehydes in saliva samples from a non-smoker, a passive smoker and a heavy smoker.  相似文献   

11.
A novel method was described for the rapid determination of atrazine using dispersive liquid phase microextraction in combination with high performance liquid chromatography (HPLC). Possible impact parameters such as sample pH, extraction and disperser solvents, salting-out effect, and extraction time were investigated. The experimental results indicated that proposed method possessed an excellent analytical performance, The linear range, detection limit, and precision (R.S.D.) were 0.1- 50 ng mL- 1 (R2 = 0.9955), 0.601 ng mL- 1 and 6,4%, respectively. The proposed method was validated with the real water samples, and the spiked recoveries were in the range of 69.9-89.8%, respectively. These results indicated that the established method with high enrichment factor, short extraction time was an excellent alternative for the routine analysis of atrazine in environmental samples. 2007 Qing Xiang Zhou. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   

12.
A simple, rapid and sensitive method for the determination of five estrogens, estrone, 17beta-estradiol, estriol, ethynyl estradiol, and diethylstilbestrol, was developed using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC/MS/MS). These estrogens were separated within 8 min by HPLC using an XDB-C8 column and 0.01% ammonia/acetonitrile (60/40, v/v) at a flow rate of 0.2 mL/min. Electrospray ionization conditions in the negative ion mode were optimized for MS/MS detection of the estrogens. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 microL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC/MS/MS method, good linearity of the calibration curve (r > or = 0.9996) was obtained in the concentration range from 10 to 200 pg/mL for all compounds examined. The limits of detection (S/N= 3) of the five estrogens examined ranged from 2.7 to 11.7 pg/mL. The in-tube SPME method showed 34-90-fold higher sensitivity than the direct injection method (5 microL injection). This method was applied successfully to the analysis of environmental water samples without any other pretreatment and interference peaks. Several surface water and wastewater samples were collected from the area around Asahi River, and estriol was detected at 35.7 pg/mL in the effluent of a sewage treatment plant. The recoveries of estrogens spiked into river waters were above 86%, except for estriol, and the relative standard deviations were below 0.9-8.8%.  相似文献   

13.
In this study, a simple, rapid, low cost, sensitive and environmentally friendly technique, supramolecular solvent microextraction (SM-SME) followed by high performance liquid chromatography-ultraviolet has been proposed to extract carbaryl from water samples. Parameters, affecting the SM-SME performance such as the weight of decanoic acid (DeA), volume of tetrahydrofuran (THF), pH and salt concentration, were studied and optimised. The effect of the pH on the extraction efficiency was evaluated by one–factor-at-a-time methodology, but the other variables were optimised by a face-centred cube central composite design methodology. Optimum extraction conditions were obtained: DeA: 70 mg; THF: 650 µL; salt concentration: 10% (w/v) NaCl and pH = 2–4), and the performance of the proposed method was evaluated. Under the optimum conditions, good linearity (1.0–500 µg L?1, r2 = 0.9994) was obtained. Limit of detection and limit of quantification were 0.3–1.0 µg L?1, respectively. Also, the recoveries of the carbaryl were obtained in the ranged from 96% to 105%. Finally, proposed method was successfully applied for the determination of the carbaryl in the water samples of farms run-off and rivers and satisfactory results were obtained.  相似文献   

14.
ABSTRACT

Tandem dispersive liquid liquid microextraction coupled with micro - sampling flame atomic absorption spectrometry for rapid determination of lead2 and cadmium2 ions in environmental water samples. A simple method termed as tandem dispersive liquid–liquid microextraction coupled with micro-sampling flame atomic absorption spectrometry is used for determination of the lead(II) and cadmium(II) ions in different environmental water samples. According to the proposed method, the target analytes are extracted from an aqueous sample solution (10 mL) into a micro-volume of an organic solvent, and then they are selectively back-extracted into an aqueous acceptor solution (150 μL) to increase the compatibility of the extractant phase with a final analyser system and provide a suitable enrichment factor. The developed method is very fast, implemented in just about 7 min, and provides a high sample clean-up. The factors influencing the extraction efficiency including the type and volume of the organic solvent, pH and volume of the acceptor solution, and number of extractions are thoroughly examined and optimised. Under the optimal experimental conditions, the developed method provides a good linearity (in the range of 0.4–300 ng mL?1 (R2 ≥ 0.994)), and low limits of detection (in the range of 0.07–0.31 ng mL?1). Finally, the method is successfully applied for the direct determination of the understudied analytes in the river, dam, and well water samples.  相似文献   

15.
研究了固相微萃取(SPME) 气相色谱 质谱联用(GC MS)同时测定环境水样中二嗪农、甲基对硫磷、对硫磷和水胺硫磷4种有机磷农药(OPPs)的分析方法。选择聚丙烯酸酯(PA)萃取纤维,对SPME的条件如萃取时间、萃取溶液的pH值和离子强度、解吸温度、解吸时间和GC MS的条件进行了优化。对二嗪农和水胺硫磷方法线性范围为0.001~10μg L,对甲基对硫磷和对硫磷方法线性范围为0.001~100μg L。二嗪农、甲基对硫磷、对硫磷、水胺硫磷的检出限分别为0.015,0.020,0.013和0.039μg L。分析加标自来水、矿泉水和湖水样品,回收率在89.0%~102%之间,RSD在2.1%~14.1%之间。适合于环境水样中痕量OPPs的快速分析。  相似文献   

16.
In the present work, a method was developed and optimized aiming at the determination of anatoxin-a in environmental water samples. The method is based on the direct derivatization of the analyte by adding hexylchloroformate in the alkalinized sample (pH = 9.0). The derivatized anatoxin-a was extracted by a solid-phase microextraction (SPME) procedure, submersing a PDMS fiber in an amber vial for 20 min under magnetic stirring. GC-MS was used to identify and quantify the analyte in the SIM mode. Norcocaine was used as internal standard. The following ions were chosen for SIM analyses (quantification ions in italics): anatoxin-a: 191, 164, 293 and norcocaine: 195, 136, 168. The calibration curve showed linearity in the range of 2.5-200 ng/mL and the LOD was 2 ng/mL. This method of SPME and GC-MS analysis can be readily utilized to monitor anatoxin-a for water quality control.  相似文献   

17.
应用可忽略耗损固相微萃取与高效液相色谱联用技术测定了环境水样中双酚A的自由溶解态浓度。为了获得高的灵敏度并减小环境因素(如温度和搅拌等)的影响,采用商品化固相微萃取纤维CW/TPR进行平衡采样。在环境水样常见pH(5~8)、缓冲容量(5~200mmol/L)和盐度(0~500mmol/L)条件下,4h可以达到萃取平衡。100mL样品足以避免样品耗损。以配制在250mmol/L NaCl和125mmol/L磷酸盐溶液(pH6.4)中的双酚A标准溶液进行校准,可以将缓冲液(0~200mmol/L)、盐度(0~500mmol/L)和pH(5.7~8.5)的影响控制在15%偏差范围以内。如需更准确的测定,也可以对样品pH值的影响加以校正。pH为6.4时,方法的线性范围为0.1~250μg/L,检出限为0.03μg/L,相对标准偏差(5μg/L,n=3)为1.1%。采用本方法测定了污水处理厂排水口的双酚A的自由溶解态浓度。  相似文献   

18.
The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg+) and mercury (Hg2+) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg+ and Hg2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL−1 for MeHg+ and 0.0014 ng mL−1 for Hg2+, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL−1 MeHg+ and Hg2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.  相似文献   

19.
We developed a sensitive and useful method for the determination of five fluoroquinolones (FQs), enoxacin, ofloxacin, ciprofloxacin, norfloxacin, and lomefloxacin in environmental waters, using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC/MS/MS). These compounds were analysed within 7 min by high-performance liquid chromatography (HPLC) using a CAPCELL PAK C8 column and aqueous ammonium formate (pH 3.0, 5 mM)/acetonitrile (85/15, v/v) at a flow rate of 0.2 mL/min. Electrospray ionization conditions in the positive ion mode were optimized for MS/MS detection. In order to optimize the extraction of FQs, several in-tube SPME parameters were examined. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample at a flow-rate of 150 μL/min, using a Carboxen 1010 PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase. Using the in-tube SPME LC/MS/MS method, good linearity of the calibration curve (r ≥ 0.997) was obtained in the concentration range from 0.1 to 10 ng/mL for all compounds examined. The limits of detection (S/N = 3) of the five FQs ranged from 7 to 29 pg/mL. The in-tube SPME method showed 60-94-fold higher sensitivity than the direct injection method (5 μL injection). This method was applied successfully to the analysis of environmental water samples without any other pretreatment and interference peaks. Several surface waters and wastewaters were collected from the area around Asahi River, and ofloxacin was detected in wastewater samples of a sewage treatment plant and other two hospitals at 17.5-186.2 pg/mL. The recoveries of FQs spiked into river water were above 81% for a 0.1 or 0.2 ng/mL spiking concentration, and the relative standard deviations were below 1.9-8.6%.  相似文献   

20.
建立了采用超声辅助分散液液微萃取技术结合高效液相色谱法(UA-DLLME-HPLC)对4种邻苯二甲酸酯(PAEs)进行富集、检测的方法,并成功应用于实际水样分析。实验中采用富集因子来评价萃取效率,考察并优化了影响萃取效率的主要因素,包括萃取剂类型和用量、分散剂类型和用量、超声时间、离子强度、萃取时间和pH值等。结果表明: 在最佳萃取条件下,该法对4种PAEs(邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯和邻苯二甲酸二正辛酯)具有较高的富集能力,富集因子分别为71、144、169和159;检出限分别为3.78、1.77、3.07和3.30 μg/L。对实验室自来水、某品牌矿泉水以及湖水分别加标50、200及500 μg/L的回收率为82.99%~114.47%,相对标准偏差为1.93%~8.31%。该法简便、快速、环保,可以用于测定实际水样中的PAEs类增塑剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号