首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Experimental studies of the acoustomagnetic effect in a magnetic fluid are performed. The linear sizes of magnetic nanoparticles of the dispersed phase are determined by the acoustogranulometric method. The mean deviation of the diameters of magnetic nanoparticles obtained at eight fixed frequencies in the range of 18?C65 kHz from their average values ??d max?? = 16 nm and ??d max?? = 9 nm is 4.4%. These results are in satisfactory agreement with the results obtained by the magnetorelaxometry method for magnetite nanoparticles. On the basis of experimental data, in the framework of the concentrational model, interaction between the elastic and thermal fields and between the magnetic and dynamic demagnetizing fields in the acoustomagnetic effect is studied. The conclusions of the model theory are confirmed by the experimental results.  相似文献   

2.
We use the Fourier transform based Warren–Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1?6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.  相似文献   

3.
The structure and the magnetisation behaviour of two different systems of magnetic nanoparticles (MNP), namely Resovist® with a wide core size distribution (diameter, σ=0.3) and SHP-20 with a rather narrow distribution (σ=0.1), were investigated by magnetorelaxometry (MRX) and magnetisation measurements in a wide concentration range. MRX on fluid and solid suspensions yielded the distribution of hydrodynamic diameters and effective magnetic anisotropy energies (EA), where towards higher iron concentrations the spatial particle correlation, i.e. aggregation, and also the width of the EA distribution were increased significantly. It was further found that these effects quantitatively depend on the suspension medium, where an increased salt concentration enhanced the aggregate size distribution and EA dispersion. At mentioned higher MNP concentrations, the quasistatic magnetisation, normalised with respect to the iron content, decreased by up to 40%. In the case of SHP-20, where single core MNPs dominate, the maximum of this drop down of the magnetisation occurred at a field strength that corresponds to the strength of mean squared dipolar interaction.  相似文献   

4.
The magnetic properties of a ferrofluid are strongly influenced by its particle size distribution. We analyzed a ferrofluid with an unknown particle size distribution as well as fractionated samples of the original material. The ferrofluid in our investigations consists of a mixture of maghemite and magnetite. We investigated these different samples using temperature-dependent magnetorelaxometry method. The evaluation of the Néel relaxation signal allows us a direct determination of the energy barrier distribution, which is one of the most important parameters of such systems of magnetic nanoparticles. The calculated particle volumes were compared with particle sizes determined by transmission electron microscopy.  相似文献   

5.
Methods have been proposed and tested for analyzing local magnetic parameters in a system of single-domain ferromagnetic nanoparticles using their magnetization curves. The magnetic inhomogeneity in ensembles of Fe3C nanoparticles encapsulated in carbon nanotubes has been investigated. It has been established that the Fe3C nanoparticles encapsulated in carbon nanotubes are characterized by two-modal distribution functions of the local magnetic anisotropy energy. The particle distribution over the blocking temperature is reconstructed from the experimental temperature dependence of the coercive force. The allowance made for the inhomogeneity of the local magnetic parameters of the Fe3C nanoparticles, which were studied by the proposed methods, explains the discrepancy between the magnetic anisotropy energy determined by the method of the magnetization approaching saturation and the magnetic anisotropy energy estimated from the coercive force of single-domain nanoparticles.  相似文献   

6.
The utility and promise of magnetic nanoparticles (MagNPs) for biomedicine rely heavily on accurate determination of the particle diameter attributes. While the average functional size and size distribution of the magnetic nanoparticles directly impact the implementation and optimization of nanobiotechnology applications in which they are employed, the determination of these attributes using electron microscopy techniques can be time-consuming and misrepresentative of the full nanoparticle population. In this work the average particle diameter and distribution of an ensemble of Fe3O4 ferrimagnetic nanoparticles are determined solely from temperature-dependent magnetization measurements; the results compare favorably to those obtained from extensive electron microscopy observations. The attributes of a population of biocompatible Fe3O4 nanoparticles synthesized by a thermal decomposition method are obtained from quantitative evaluation of a model that incorporates the distribution of superparamagnetic blocking temperatures represented through thermomagnetization data. The average size and size distributions are determined from magnetization data via temperature-dependent zero-field-cooled magnetization. The current work is unique from existing approaches based on magnetic measurement for the characterization of a nanoparticle ensemble as it provides both the average particle size as well as the particle size distribution.  相似文献   

7.
We report on the synthesis of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave assisted combustion route by using urea as fuel. XRD and FT-IR analyses confirm the composition and structure as spinel ferrite. The crystallite size estimated from XRD (16.4 nm) and the magnetic core size (15.04 nm) estimated from VSM agree well, while a slightly smaller magnetic diameter reflects a very thin magnetically dead layer on the surface of the nanoparticles. Morphological investigation of the products was done by TEM which revealed the existence of irregular shapes such spherical, spherodial and polygon. Magnetization measurements performed on Zn0.7Ni0.3Fe2O4 nanoparticles showed that saturation was not attained at even in the high magnetic field. The sample shows superparamagnetic behavior at around the room temperature and ferromagnetic behavior below the blocking temperature which is measured as 284 K.  相似文献   

8.
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples.  相似文献   

9.
Magnetic characterization of maghemite nanoparticles dispersed in a polymeric template and treated under different chemical processes is reported in this work. Particle size estimated from magnetic measurements, D M?≈?10 nm, for the free-surfactant sample, is consistent with values determined from XRD analysis and TEM images. The magnetic collapse of sextets towards a quadrupole doublet as the temperature is increased reveals the thermal relaxation of smaller $\upgamma $ -Fe2O3 nanoparticles. Magnetic measurements show a strong irreversibility between ZFC and FC curves suggesting the occurrence of particle–particle interaction.  相似文献   

10.
Magnetic nanoparticles have been investigated for biomedical applications for more than 30 years. The development of biocompatible nanosized drug delivery systems for specific targeting of therapeutics is imminent in medical research, especially for treating cancer and vascular diseases. We used drug-labeled magnetic iron oxide nanoparticles, which were attracted to an experimental tumor in rabbits with an external magnetic field (magnetic drug targeting, MDT). Aim of this study was to detect and quantify the biodistribution of the magnetic nanoparticles by magnetorelaxometry. The study shows higher amount of nanoparticles in the tumor after intraarterial application and MDT compared to intravenous administration.  相似文献   

11.
The effects of grinding on interparticle magnetic interactions for an ensemble of agglomerated MnFe2O4 nanoparticles have been studied. Structural analyses showed that by grinding the samples, a small variation in size of crystallites and lattice strain will occur. ac Magnetic susceptibility measurements under different conditions and spin dynamics analysis suggest that freezing temperature is frequency dependent and it is in good agreement with critical slowing down model. This is an indication that these nanoparticles have superspin glass behavior. The estimated and τ0 parameters using critical slowing down model show that by increasing the grinding time the interaction between nanoparticles decreases. ac Susceptibility measurements in cooling and heating process show a thermal hysteresis. The thermal hysteresis decreased by increasing the grinding time. Also, the thermal hysteresis is frequency dependent and it increased as frequency decreased. These results showed that interparticle interactions such as dipole-dipole and exchange interactions between nanoparticles become weaker by grinding.  相似文献   

12.
In the last years, the study of Fe-based magnetic nanoparticles (MNP) has attracted increasing interest either for the physical properties shown by nanosized materials (electric and magnetic properties are strongly affected by dimension and surface effects) either for the different technological applications of these materials (catalysis, drug delivery, magnetic resonance imaging, contaminants removal from groundwater, new exchange coupled magnets, soft nanomagnets for high frequency applications, etc.). In this article, the results obtained in the synthesis and characterization of the Fe3O4 MNP is reported. The magnetite nanoparticles were synthesized by a modified Massart method. Structural characterization was performed using X-ray diffraction analysis and a complete morphological and dimensional study was carried out by means of Transmission Electron Microscopy, and a.c. magnetic susceptibility measured as a function of the frequency of the applied magnetic field. Diameters of the superparamagnetic Fe3O4 nanoparticles are ranging from 2 to 10 nm, as evidenced by all the techniques employed. The size distribution of the hydrated aggregates in solution has been obtained by quantitative analysis of the frequency dependence of the a.c. susceptibility. The mathematical approach adopted will be described and all the obtained results will be compared and discussed.  相似文献   

13.
The present work investigates experimentally curling magnetic configurations locally observed in almost dispersed Permalloy nanoparticles in the remanent state. Magnetic analysis is performed in a field emission TEM using off-axis electron holography. Particularly, electron holography is used to characterize the magnetic microstructure of Fe30Ni70 nanoparticles, whose average diameter (50 nm) is expected to be close to the critical size for a curling magnetic structure (vortex) formation. The vortex core diameter Dcore and the bulk magnetic profile of the vortex are measured and compared with a “rigid vortex” micromagnetic model. The connection between vortex structure and the characteristic micromagnetic length of the system deduced from magnetization curve measurements is discussed.  相似文献   

14.
Magnetic nanoparticles have found broad applications in medicine, especially for cell targeting and transport, and as contrast agents in MRI. Our samples of ??-Fe2O3 nanoparticles were prepared by annealing in silica matrix, which was leached off and the bare particles were then coated with amorphous silica layers of various thicknesses. The distribution of particle sizes was determined from the TEM pictures giving the average size ~20 nm and the thickness of silica coating ~5; 8; 12; 19 nm. The particles were further characterized by the XRPD and DC magnetic measurements. The nanoparticles consisted mainly of ??-Fe2O3 with admixtures of ~1 % of the α phase and less than 1 % of the γ phase. The hysteresis loops displayed coercivities of ~2 T at room temperature. The parameters of hyperfine interactions were derived from transmission Mössbauer spectra. Observed differences of hyperfine fields for nanoparticles in the matrix and the bare ones are ascribed to strains produced during cooling of the composite. This interpretation is supported by slight changes of their lattice parameters and increase of the elementary cell volume deduced from XRD. The temperature dependence of the magnetization indicated a two-step magnetic transition of the ??-Fe2O3 nanoparticles spread between ~85 K and ~150 K, which is slightly modified by remanent tensile stresses in the case of nanoparticles in the matrix. The subsequent coating of the bare particles by silica produced no further change in hyperfine parameters, which indicates that this procedure does not modify magnetic properties of nanoparticles.  相似文献   

15.
The magnetic nanoparticles of La0.75Sr0.25MnO3 perovskite manganite with a controlled size were prepared via sol–gel procedure, followed by thermal treatment and subsequent mechanical processing of the resulting raw product. The prepared materials were structurally studied by the XRD and TEM methods and probed by DC magnetic measurements. The nanoparticles of the mean crystallite sizes 11–40 nm exhibit T C in the range of ≈310–347 K and the sample possessing 20-nm crystallites was identified as the most suitable for hyperthermia experiments. In order to obtain a colloidally stable suspension and prevent toxic effects, the selected magnetic cores were further encapsulated into silica shell using tetraethoxysilane. The detailed magnetic studies were focused on the comparison of the raw product, the bare nanoparticles after mechanical processing and the silica-coated nanoparticles, dealing also with effects of size distribution and magnetic interactions. The heating experiments were carried out in an AC field of frequencies 100 kHz–1 MHz and amplitude 3.0–8.9 kA m−1 on water dispersions of the samples, and the generated heat was deduced from their warming rate taking into account experimentally determined thermal losses into surroundings. The experiments demonstrate that the heating efficiency of the coated nanoparticles is generally higher than that of the bare magnetic cores. It is also shown that the aggregation of the bare nanoparticles increases heating efficiency at least in a certain concentration range.  相似文献   

16.
In this paper,we report on the magnetic properties of Fe3O4 nanoparticles with different grain sizes under different pressures.In all the samples,the saturated magnetization Ms shows a linear decrease with increasing pressure.The thickness of the magnetic dead layer on the nanoparticle surface nuder different pressures was roughly estimated,which also increases with increasing pressure.The transport measurements of the nanoparticle Fe3O4 compacts show that the low-field magnetoresistance (MR) value is insensitive to the grain size in a wide temperature range;however,the high-field MR value is dependent on grain size,especially at low temperatures.These experimental results can be attributed to the different surface states of the nanoparticles.  相似文献   

17.
Kopcewicz  M.  Grabias  A.  Idzikowski  B.  Williamson  D. L. 《Hyperfine Interactions》2002,139(1-4):525-534
The specialized rf-Mössbauer technique is used to elucidate the magnetic properties of NANOPERM-type nanocrystalline alloys. The influence of alloy composition on the soft magnetic properties is studied for the Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo, Zr) alloys. The rf-Mössbauer experiments allowed us to distinguish magnetically soft nanoclusters from magnetically harder microcrystalline phases. The measurements performed as a function of the rf field intensity allowed the determination of the distribution of anisotropy fields related to the size distribution of bcc nanoclusters. Smaller anisotropy fields in the nanocrystalline phase were found in Nb-, Zr-, and Mo-containing alloys as compared with the alloys which contain Ti and Ta. The Mössbauer measurements were supplemented by X-ray diffraction determination of the size of nanocrystalline grains.  相似文献   

18.
Fucan-coated magnetite (Fe3O4) nanoparticles were synthesized by the co-precipitation method and studied by Mössbauer spectroscopy and magnetic measurements. The sizes of the nanoparticles were 8–9 nm. Magnetization measurements and Mössbauer spectroscopy at 300 K revealed superparamagnetic behavior. The magnetic moment of the Fe3O4 is partly screened by the Fucan coating aggregation. When the magnetite nanoparticles are capped with oleic acid or fucan, reduced particle-particle interaction is observed by Mössbauer and TEM studies. The antitumoral activity of the fucan-coated nanoparticles were tested in Sarcoma 180, showing an effective reduction of the tumor size.  相似文献   

19.
A series of Mn–Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1−xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (MT) and magnetization (MH) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.  相似文献   

20.
X-Ray photoelectron spectra of nano-sized superparamagnetic iron oxide nanoparticles were examined with the aim to discriminate the different degree of iron oxidation. Careful analysis of the valence band regions reveals the presence of both Fe3O4 and Fe2O3. The application of factor analysis enabled us to extract the relative molar concentrations of these oxides in the nanoparticles. This is of particular interest in improving the magnetic properties of iron oxide nanoparticles whose superparamagnetic character can be optimized to obtain better contrast in images from nuclear magnetic resonance. As a result, the factor analysis allows tuning the nanoparticle synthesis conditions in order to obtain the optimal magnetic properties for imaging. Results obtained by the XPS valence band analysis were compared to the transmission electron microscopy, X-ray diffraction and Raman measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号