首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of the mixed spinel ferrite series Mg(0.9+x)Fe2(1−x)Ni0.1TixO4 with x=0.5 and 0.6, prepared by solid state reaction of the appropriate oxides, have been investigated with 57Fe Mössbauer spectroscopy. The as-prepared samples are found to be mainly superparamagnetic due to magnetic cluster formation. Samples after at least three times reheated exhibit spectra, which can be rather interpreted by a transversal relaxation of the spin above and spin-glass behaviour below the respective freezing temperatures Tf. External-field spectra reveal the canting to occur only on the octahedral sites. From the derived transition temperatures and thresholds together with data from earlier investigated sample with x=0.7 a compositional magnetic phase diagram for this spinel series is obtained.  相似文献   

2.
CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol–gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.  相似文献   

3.
MnFe2−xScxO4 was studied by means of the Mössbauer effect. It was shown that Sc replaces Fe in octahedral sites only. Sc substitution results in the change of cationic distribution of a normal in the ferrite lattice. For the MnFe1,3Sc0,7O4 sample the cationic distribution of a normal spinel was found.  相似文献   

4.
The linear and nonlinear low field AC susceptibilities of Zn0.75Co0.25Fe0.5Cr1.5O4 show peaks due to non-critical contributions, which mask the peak due to spin glass ordering. They extend into the region of temperatures in which Mössbauer spectra do not show any magnetic component. When a DC field of 200 Oe suppresses the non-critical contributions, peak due to spin glass ordering is clearly visible. The spin glass ordering is thus shown to be a thermodynamic transition. The critical exponent is found to fall within the range found using other spin glasses. Mössbauer spectra in zero fields provide TSG, which agrees with the peak temperature of AC susceptibilities in the absence of non-critical contributions. 〈SZ〉 determined using Mössbauer spectra does not show any anomaly. In the presence of a field of 5 T, the spectra show SG ordering at 4.2 K, which converts into ferrimagnetic ordering at higher temperatures.  相似文献   

5.
AbstractPolycrystauine samples of composition BaZn2–xCox 16O27 (O2-W undergoes a transition from planar to conical order at 515±5 K.  相似文献   

6.
The xFe2TiO4-(1−x)Fe3O4 pseudo-binary systems (0≤x≤1) of ulvöspinel component were synthesized by solid-state reaction between ulvöspinel Fe2TiO4 precursors and commercial Fe3O4 powders in stochiometric proportions. Crystalline structures were determined by X-ray powder diffraction (XRD) and it was found that the as-obtained titanomagnetites maintain an inverse spinel structure. The lattice parameter a of synthesized titanomagnetite increases linearly with the increase in the ulvöspinel component. 57Fe room temperature Mössbauer spectra were employed to evaluate the magnetic properties and cation distribution. The hyperfine magnetic field is observed to decrease with increasing Fe2TiO4 component. The fraction of Fe2+ in both tetrahedral and octahedral sites increases with the increase in Ti4+ content, due to the substitution and reduction of Fe3+ by Ti4+ that maintains the charge balance in the spinel structure. For x in the range of 0 ≤x≤0.4, the solid solution is ferrimagnetic at room temperature. However, it shows weak ferrimagnetic and paramagnetic behavior for x in the range of 0.4<x≤0.7. When x>0.70, it only shows paramagnetic behavior, with the appearance of quadrupole doublets in the Mössbauer spectra. Simultaneous differential scanning calorimetry and thermogravimetric analysis (DSC-TGA) studies showed that magnetite is not stable, and thermal decomposition of magnetite occurs with weight losses accompanying with exothermic processes under heat treatment in inert atmosphere.  相似文献   

7.
A single phase manganese ferrite powder have been synthesized through the thermal decomposition reaction of MnC2O4·2H2O-FeC2O4·2H2O (1:2 mole ratio) mixture in air. DTA-TG, XRD, Mössbauer spectroscopy, FT-IR and SEM techniques were used to investigate the effect of calcination temperature on the mixture. Firing of the mixture in the range 300-500 °C produce ultra-fine particles of α-Fe2O3 having paramagnetic properties. XRD, Mössbauer spectroscopy as well as SEM experiments showed the progressive increase in the particle size of α-Fe2O3 up to 500 °C. DTA study reveals an exothermic phase transition at 550 °C attributed to the formation of a Fe2O3-Mn2O3 solid solution which persists to appear up to 1000 °C. At 1100 °C, the single phase MnFe2O4 with a cubic structure predominated. The Mössbauer effect spectrum of the produced ferrite exhibits normal Zeeman split sextets due to Fe3+ions at tetrahedral (A) and octahedral (B) sites. The obtained cation distribution from Mössbauer spectroscopy is (Fe0.92Mn0.08)[Fe1.08Mn0.92]O4.  相似文献   

8.
The effect of tetravalent Ti+4 substitution in Mg0.95Mn0.05Fe2O4 on its magnetic and electrical properties has been studied using X-ray diffraction, Mössbauer spectroscopy, isothermal dc magnetization and dielectric measurements. X-ray diffraction studies have shown the structural transformation from cubic to tetragonal with the Ti+4 substitution. The Mössbauer spectra of Mg0.95Mn0.05Fe1.0Ti1.0O4 recorded in the temperature range 20-300 K shows the presence of the magnetic as well as quadrupole interactions. The isothermal hysteresis loop infers that the system exhibits a ferrimagnetic ordering at room temperature. The Zero-field-cooled (ZFC) and field-cooled (FC) magnetization studies support ferrimagnetic ordering of Mg0.95Mn0.05Fe1.0Ti1.0O4 at room temperature. Signatures of ferroelectric transition have been observed in the temperature range 200-300 K from dielectric measurements. The observed magnetic and dielectric behaviour indicate that this material exhibits multiferroic behaviour.  相似文献   

9.
Nanostructured ferroxide particles with initial formula Ni0.5Zn0.5Fe2O4 are investigated. The aim was to explore the monodomain and the superparamagnetic states of the ferrospinel and the impact of the surface magnetic disorder on the magnetization processes. Mössbauer spectroscopy (MöS) demonstrated that the ion distribution follows the general formula (Zn0.5Fe0.5)A[Ni0.5Fe1.5]BO4, where A is the tetrahedral and B, the octahedral sublattice. MöS in an external magnetic field (5 T) at 4.2 K shows non-collinearity of the sublattices’ magnetic moments and deviations in the hyperfine magnetic field that could be related to a canting effect. Magnetic measurements were applied to characterize the temperature behavior of the magnetic properties and the a.c. complex magnetic susceptibility.  相似文献   

10.
The Mössbauer effect has been studied in the mixed ferrites Co x Fe3–x O4 (forx=0.8, 0.9 and 1) with the spinel structure in the temperature range between 78 and 380 K. The composition withx=1, showed an expected Zeeman spectrum with two overlapping magnetic hyperfine patterns related to the Fe3+ ions in tetrahedral and octahedral sites. While for samples withx=0.8 and 0.9 the Mössbauer spectrum for each compound was successfully analysed into three different patterns corresponding to the ferric ions placed at the tetrahedral and octahedral sites and ferrous ions at the octahedral sites, indicating no electron transfer between Fe3+ and Fe2+, where the quantity of cobalt is sufficiently large to be located at the six nearest neighbours to ferrous ions. The Mössbauer effect parameters were calculated for these observed sites and their variation with temperature reported. The reduced hyperfine magnetic fields of the Fe3+ (B) ions were found to follow the Brillouin curve forS=5/2 and one third power law. The magnetic ordering temperature was determined to be 815 K and the possible magnetic interactions were discussed.  相似文献   

11.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

12.
EuFeO3 was prepared by mechanical alloying starting from europium and iron oxides. After 20 h of milling the resulting compound is pure EuFeO3. Samples were studied as a function of milling period using XRD, Mössbauer, SEM, and magnetic measurements. Mössbauer spectroscopy was used to probe both the transition metal and the rare-earth sites. Results are compared with previous works on EuFeO3 prepared by different methods.  相似文献   

13.
Zn0.4Cu0.6Fe1.2Cr0.8O4 has been studied by Mössbauer spectroscopy, SQUID magnetometry, and X-ray diffraction. The crystal is found to have a cubic spinel structure with the lattice constant The iron ions are in ferric states and occupy both the tetrahedral (A) and octahedral (B) sites; the fractions of the iron ions at the A-sites and B-sites are 0.52 and 0.34, respectively. While spin orderings are collinear at higher temperatures, spin canting begins to appear around 25 K and increases with decreasing temperature; the canting angle at 4.7 K reaches up to 27°. Debye temperatures of the tetrahedral and octahedral sites are determined to be 339 and 335 K, respectively.  相似文献   

14.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

15.
Spectral studies of Co substituted Ni-Zn ferrites   总被引:1,自引:0,他引:1  
The spinel ferrites Zn0.35Ni0.65−xCoxFe2O4, 0≤x≤1, have been prepared using the standard ceramic technique. Room temperature Mössbauer, X-ray and infrared IR spectra were used for carrying out this study. X-ray patterns reveal that all the samples have single-phase cubic spinel structure. The Mössbauer spectra of the samples show a paramagnetic phase for x=0 and a six-line magnetic pattern and a central paramagnetic phase for x≥0.1. They are analyzed and attributed to two magnetic subpatterns and two quadrupole doublets due to Fe3+ ions at the tetrahedral A-sites and octahedral B-sites. Four absorption bands are observed in IR spectra. They confirm the spinel structure of the samples and existence of Fe3+ ions in the sample sublattices. The deduced hyperfine interactions, lattice parameters, absorption band positions and intensities and force constant are found to be dependent on the substitution factor x, where the cation distribution is estimated. The hyperfine magnetic fields, magnetization and lattice resonant frequency are found to be dependent on the interionic distance.  相似文献   

16.
By use of Mössbauer spectroscopy we have found that the transition from tetragonal to cubic structure in (NH4)3FeF6 takes place at 263 K. The phase transition exhibits a hysteresis of 0.5 K. The experimental data indicate that the tetragonal deformation found at low temperatures diminishes gradually as the transition temperature is approached. The spectra are influenced by electronic relaxation.  相似文献   

17.
Mössbauer spectra and magnetic measurement of Ni0.7Mn0.3Gd0.1Fe1.9O4 ferrite were investigated by Oxford MS-500 Mössbauer spectrometer and superconducting quantum interference device (SQUID) magnetometer with a field 5 T. Ni0.7Mn0.3Gd0.1Fe1.9O4 nanoparticles have a considerable coercivity of 1040 Oe when the test temperature is reduced to 2 K. Mössbauer spectra show that Ni0.7Mn0.3Gd0.1Fe1.9O4 nanoparticles exhibit superparamagnetism at room temperature and ferrimagnetism at 77 K.  相似文献   

18.
Barium hexaferrite powders with manganese substitution were prepared by mechanosynthesis. The structural and magnetic properties were characterized by X-ray diffractometer and vibration sample magnetometer, respectively. XRD patterns were refined by Rietveld method. Preferential site occupation of manganese ion was investigated by room temperature (RT) Mössbauer measurements. XRD results showed a single-phase barium hexaferrite with some residual hematite. Crystallite size was observed to decrease with substitution amount. Lower saturation magnetization and increased coercivity is observed in substituted samples. RT Mössbauer measurements showed that manganese ions preferentially occupy 12k, 4f2, and 2a sites.  相似文献   

19.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

20.
The magnetic properties of RE0.7Ca0.3Mn0.95Fe0.05O3 perovskite with rare-earth cations (RE=Sm and Gd) were investigated by means of X-ray diffraction, Mössbauer spectroscopy, and low temperature (4.2-266 K) magnetization measurements. Structural characterization of these compounds shows that they both have orthorhombic (Pbnm) structure. The Mössbauer spectra show clear evidence of local structural distortion of the Mn(Fe)O6 octahedron, which is based on the non-zero nuclear quadrupole interactions for high-spin Fe3+ ions. It was found that the local structural distortion increases significantly when Sm3+ is replaced by Gd3+. This distortion is attributed to the Jahn-Teller coupling strength as estimated from the Mössbauer effect results. The magnetic results indicate that the Curie temperature decreases as a result of replacing Sm by Gd. This is due to the decrease of the average A-site cationic radius 〈rA〉. The rapid increase of magnetization at low temperature indicates the magnetic ordering of rare earth ions at the A-site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号