首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spherical crystalline Fe nanoparticles, ∼100 nm in diameter, were synthesized under Ar-50% H2 arc-plasma. These nanoparticles were dispersed in silicone oil after silane treatment on as-grown thin oxide layer (∼2 nm) to make their surfaces hydrophobic. The resulting Fe nanoparticles exhibited a high saturation magnetization of ∼190 emu/g at room temperature. The static magnetorheological behavior was measured for the colloidal dispersion (solid concentration: 15 vol%) at room temperature under magnetic flux densities of 0-0.3 T, using a parallel-plate-type commercial rheometer. The yield stress continuously increased with magnetic flux density, demonstrating the Bingham plastic behavior. Moreover, subjecting the sample to a magnetic flux density of 0.3 T increased the yield stress by ∼102. Additionally, the colloidal dispersion exhibited good stability against sedimentation.  相似文献   

2.
Mesoporous carbon composites, containing nickel and nickel oxide nanoparticles, were obtained by soft-templating method. Samples were synthesized under acidic conditions using resorcinol and formaldehyde as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock co-polymer Lutrol F127 as a soft template and nickel and nickel oxide nanoparticles, and nickel nitrate as metal precursors. In addition, a one set of samples was obtained by impregnation of mesoporous carbons with a nickel nitrate solution followed by further annealing at 400 °C. Wide angle X-ray powder diffraction along with thermogravimetric analysis proved the presence of nickel nanoparticles in the final composites obtained using nickel and nickel oxide nanoparticles, and Ni(NO3)2 solution. Whereas, the impregnation of carbons with a nickel nitrate solution followed by annealing at 400 °C resulted in needle-like nickel oxide nanoparticles present inside the composites’ pores. Low-temperature (−196 °C) nitrogen physisorption, X-ray powder diffraction, and thermogravimetric analysis confirmed good adsorption and structural properties of the synthesized nickel-carbon composites, in particular, the samples possessed high surface areas (>600 m2/g), large total pore volumes (>0.50 cm3/g), and maxima of pore size distribution functions at circa 7 nm. It was found that the composites were partially graphitized during carbonization process at 850 °C. The samples are stable in an air environment below temperature of 500 °C. All these features make the synthesized nickel-carbon composites attractive materials for adsorption, catalysis, energy storage, and environmental applications.  相似文献   

3.
Thermal decomposition of the trinuclear complex [Fe2CrO(CH3COO)6(H2O)3]NO3 at 300, 400 and 500 °C gave γ-Fe2O3 nanoparticles along with amorphous chromium oxide, while decomposition of the same starting compound at 600 and 700 °C led to the formation of α-(Fe2/3Cr1/3)2O3 nanoparticles. Size of γ-Fe2O3 nanoparticles, determined by X-ray diffraction, was in the range from 9 to 11 nm and increased with formation temperature growth. Average size of α-(Fe2/3Cr1/3)2O3 nanoparticles was about 40 nm and almost did not depend on the temperature of its formation. γ-Fe2O3 nanoparticles possessed superparamagnetic behavior with blocking temperature 180-250 K, saturation magnetization 29-35 emu/g at 5 K, 44-49 emu/g at 300 K and coercivity 400-600 Oe at 5 K. α-(Fe2/3Cr1/3)2O3 nanoparticles were characterized by low magnetization values (2.7 emu/g at 70 kOe). Such magnetic properties can be caused by non-compensated spins and defects present on the surface of these nanoparticles. The increase of α-(Fe2/3Cr1/3)2O3 formation temperature led to decrease of magnetization (being compared for the same fields), which may be caused by decrease of the quantity of defects or non-compensated spins (due to decrease of particles' surface).  相似文献   

4.
Multifunctional FeCo nanoparticles with narrow size distribution (less than 8% standard deviation) were fabricated by a novel physical vapor nanoparticle-deposition technique. The size of magnetic nanoparticles was controlled in the range from 3 to 100 nm. The shape of nanoparticles was controlled to be either spherical or cubic. The particles had a high specific magnetization of 226 emu/g at low saturation field, which is much higher than the currently commercialized iron oxide nanoparticles. Core–shell-type Co(Fe)–Au nanoparticles were produced by the same technique. They combined the high moment of the Co(Fe) core with the plasmonic feature of a Au shell.  相似文献   

5.
We report synthesis of a transparent magnetic semiconductor by incorporating Ni in zinc oxide (ZnO) matrix. ZnO and nickel-doped zinc oxide (ZnO:Ni) thin films (∼60 nm) are prepared by fast atom beam (FAB) sputtering. Both undoped and doped films show the presence of ZnO phase only. The Ni concentration (in at%) as determined by energy dispersive X-ray (EDX) technique is ∼12±2%. Magnetisation measurement using a SQUID magnetometer shows that the Ni-doped films are ferromagnetic, having coercivity (Hc) values 192, 310 and 100 Oe and saturation magnetization (Ms) values of 6.22, 5.32 and 4.73 emu/g at 5, 15 and 300 K, respectively. The Ni-doped film is transparent (>80%) across visible wavelength range. Resistivity of the ZnO:Ni film is ∼2.5×10−3 Ω cm, which is almost two orders of magnitude lower than the resistivity (∼4.5×10−1 Ω cm) of its undoped counterpart. Impurity d-band splitting is considered to be the cause of increase in conductivity. Interaction between free charges generated by doping and localized d spins of Ni is discussed as the reason for ferromagnetism in the ZnO:Ni film.  相似文献   

6.
Magnetite nanoparticles are found to assemble into randomly dispersed loose nanoscale spheres with diameters ∼300 nm in ethylene glycol in the presence of polyethylene and a small quantity of polyethyleneimine. Modern analysis methods are employed to provide structure information of the magnetic loose spheres. The ferromagnetic saturation magnetization is ∼80.0 emu g−1, and the coercive force is 209 Oe. The microwave electromagnetic parameters are measured by a vector network analyzer. The synthesized loose spheres exhibit novel microwave properties compared with the conventional Fe3O4 nanoparticles. An additional microwave loss peak appears in the Ku band, which is attributed to the loose structure.  相似文献   

7.
We demonstrate a single-step facile approach for highly water-stable assembly of amine-functionalized Fe3O4 nanoparticles using thermal decomposition of Fe-chloride precursors in ethylene glycol medium in the presence of ethylenediamine. The average size of nanoassemblies is 40±1 nm, wherein the individual nanoparticles are about 6 nm. Amine-functionalized properties are evident from Fourier transform infrared spectrometer (FTIR), thermal and elemental analyses. The saturation magnetization and spin-echo r2 of the nanoassemblies were measured to be 64.3 emu/g and 314.6 mM−1 s−1, respectively. The higher value of relaxivity ratio (r2/r1=143) indicates that nanoassemblies are a promising high-efficiency T2 contrast agent platform.  相似文献   

8.
Zn-doped nickel ferrite nanoparticles (Zn0.6Ni0.4Fe2O4) have been prepared via a surfactant, polyethylene glycol assisted hydrothermal route. X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and vibrating scanning magnetometry (VSM) were used for the structural, morphological, and magnetic characterizations of the product, respectively. TEM analysis revealed that the nanoparticles have a narrow size distribution, with average particle size of 15±1 nm, which agrees well with the XRD based estimate of 14±2 nm. The absence of saturation and remanent magnetization, and coercivity in the high temperature region of the M-H curve and non-zero magnetic moments indicate superparamagnetism of the nanoparticles with a canted spin structure. The appearance of a peak on the temperature-dependent zero-field cooling magnetization curve at ∼190 K indicates the blocking temperature of the sample.  相似文献   

9.
Aiming at improving the durability of anodic electrochromic nickel oxide thin films, Ni-M-O (M = Co, Ta) thin films were grown by pulsed laser deposition (PLD), using optimized conditions, namely room temperature and 10−1 mbar oxygen pressure. For low Co and Ta contents (<5%), both additions lead to a loss of the [1 1 1] preferred orientation of the NiO rock-salt structure followed by a film amorphization with increasing Ta amount. Among the two series of metal additions (M ≤ 20%), the Ni-Co-O (5% Co) and Ni-Ta-O (10% Ta) thin films show the highest electrochemical performances especially in respect of improved durability. If the enhanced properties are associated with a limited dissolution of the oxidized phase for the Ni-Ta-O system, the opposite trend is observed for the Ni-Co-O system as compared to pure NiO.  相似文献   

10.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

11.
The polydiethylsiloxane-based ferrofluid was prepared by dispersing finely divided magnetic Fe3O4 particles which are modified with oleoyl sarcosine and lauroyl sarcosine. The optimized experiment parameters including molar ratio of surfactant to Fe3O4 (1:5), temperature (80 °C), stirring rate (300 RPM), the surfactant content of lauroyl sarcosine (0 to 33 mol%) and the modification time (25 min) were obtained by the orthogonal test. The magnetic liquid was characterized by a transmission electron microscope (TEM), infrared (IR) spectrometer, X-ray diffractometer (XRD), thermogravimetry (TG), vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). It is indicated that the surfactant is mainly bonded to the surface of Fe3O4 nanoparticles through covalent bond between carboxylate (COO) and Fe atom. The modified magnetic particles are equally dispersed into the carrier and remain stable below −12 °C over 4 months. The ferrofluids exhibit excellent frost resistance property and distinctly reduced temperature coefficient of viscosity compared with polydimethylsiloxane-based ferrofluids and hydrocarbon-based ferrofluids, respectively. The saturation magnetization could reach up to 27.7 emu/g.  相似文献   

12.
Hard magnetic composites—hollow microsphere (core)/titania (intermediate layer)/barium ferrite (magnetic shell) (M/T/B) were prepared by wet-chemical method. Barium ferrite nanoparticles were directly coated on the rutile titania-coated hollow microsphere forming light hard magnetic composites using sol-gel technique. The prepared composites were characterized with FESEM, EDS, XRD and vibrating sample magnetometry. The composites are composed of barium ferrite, hematite, titania and mullite. For the samples with 40 wt.% barium ferrite, its specific saturation magnetization with titania is increased to 17.88 emu/g in comparison with 9.6 emu/g without titania. The function of titania in the composites is also discussed.  相似文献   

13.
The nanocrystalline samples of La0.9Sr0.1MnO3 (LSMO) have been prepared by the combustion method. The thermo gravimetric analysis of precursor was carried out. The X-ray diffraction study confirms the rhombohedral crystal structure without any other impurity phases. The morphology and magnetic properties change with annealing temperature. The saturation magnetization increases linearly and coercivity of the nanoparticles varies significantly as annealing temperature increases. The maximum saturation magnetization and lower coercivity found for the sample heat treated at 1200 °C are 52.5 emu/g and 10.7 Oe respectively.  相似文献   

14.
The magnetocaloric properties of melt-spun Gd-B alloys were examined with the aim to explore their potential application as magnetic refrigerants near room temperature. A series of Gd100−xBx (x=0, 5, 10, 15, and 20 at%) alloys were prepared by melt spinning. With the decrease in Gd/B ratio, Curie temperature (TC) remains constant at ∼293 K, and saturation magnetization, at 275 K, decreases from ∼100 to ∼78 emu/g. Negligible magnetic hysteresis was observed in these alloys. The peak value of magnetic entropy change, (−ΔSM)max, decreased from ∼9.9 J/kg K (0-5 T) and ∼5.5 J/kg K (0-2 T) for melt-spun Gd to ∼7.7 J/kg K (0-5 T) and ∼4.0 J/kg K (0-2 T), respectively for melt-spun Gd85B15 and Gd80B20 alloys. Similarly, the refrigeration capacity (q) decreased monotonously from ∼430 J/kg (0-5 T) for melt-spun Gd to ∼330 J/kg (0-5 T) for melt-spun Gd80B20 alloy. The near room temperature magnetocaloric properties of melt-spun Gd100−xBx (0≤x≤20) alloys were found to be comparable to few first-order transition based magnetic refrigerants.  相似文献   

15.
Ni–Zn ferrites have been widely used in components for high-frequency range applications due to their high electrical resistivity, mechanical strength and chemical stability. Ni–Zn ferrite nanopowders doped with samarium with a nominal composition of Ni0.5Zn0.5Fe2−xSmxO4 (x=0.0, 0.05, and 0.1 mol) were obtained by combustion synthesis using nitrates and urea as fuel. The morphological aspects of Ni–Zn–Sm ferrite nanopowders were investigated by X-ray diffraction, nitrogen adsorption by BET, sedimentation, scanning electron microscopy and magnetic properties. The results indicated that the Ni–Zn–Sm ferrite nanopowders were composed of soft agglomerates of nanoparticles with a high surface area (55.8–64.8 m2/g), smaller particles (18–20 nm) and nanocrystallite size particles. The addition of samarium resulted in a reduction of all the magnetic parameters evaluated, namely saturation magnetization (24–40 emu/g), remanent magnetization (2.2–3.5 emu/g) and coercive force (99.3–83.3 Oe).  相似文献   

16.
Synthesis of magnetite (Fe3O4) nanoparticles under oxidizing environment by precipitation from aqueous media is not straightforward because Fe2+ gets oxidized to Fe3+ and thus the ratio of Fe3+:Fe2+=2:1 is not maintained during the precipitation. A molar ratio of Fe3+:Fe2+ smaller than 2:1 has been used by many to compensate for the oxidation of Fe2+ during the preparation. In this work, we have prepared iron oxide nanoparticles in air environment by the precipitation technique using initial molar ratios Fe3+:Fe2+?2:1. The phases of the resulting powders have been determined by several techniques. It is found that the particles consist mainly of maghemite with little or no magnetite phase. The particles have been suspended in non-aqueous and aqueous media by coating the particles with a single layer and a bilayer of oleic acid, respectively. The particle sizes, morphology and the magnetic properties of the particles and the ferrofulids prepared from these particles are reported. The average particle sizes obtained from the TEM micrographs are 14, 10 and 9 nm for the water, kerosene and dodecane-based ferrofluids, respectively, indicating a better dispersion in the non-aqueous media. The specific saturation magnetization (σs) value of the oleic-acid-coated particles (∼53 emu/g) is found to be lower than that for the uncoated particles (∼63 emu/g). Magnetization σs of the dodecane-based ferrofluid is found to be 10.1 emu/g for a volume fraction of particles ?=0.019. Zero coercivity and zero remanance on the magnetization curves indicate that the particles are superparamagnetic (SPM) in nature.  相似文献   

17.
We study dual-synthetic antiferromagnets (DSyAFs) using Co2FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices.  相似文献   

18.
(Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe3O4, MnO2, ZnO, TiO2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm−3), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased.  相似文献   

19.
In this paper, a novel amorphous Co-Pt-P thin film fabricated by DC sputtering was proposed for soft underlayer in perpendicular recording. The structural and magnetic properties of the films were investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), respectively. The results show that maximum permeability of Co-12 at%Pt-P films sputtered at room temperature (RT) is quite low when the phosphorus content is less than 5.2 at%, but Co-12 at%Pt-7 at%P thin film, is of amorphous state and has a high permeability of ∼500. The excellent soft magnetic properties of maximum permeability (500), coercivity (18 Oe) and saturation magnetization (760 emu/cm3) indicate that the amorphous Co-12 at%Pt-7 at%P film is expected to be a promising soft magnetic underlayer of perpendicular magnetic recording. The Co-12 at%Pt-7 at%P thin film is gradually crystallized with increasing substrate temperatures. The crystallization temperature of the Co-12 at%Pt-7 at%P thin film is ∼200 °C.  相似文献   

20.
Benzenedicarboxylate complexes, especially phthalate ones, can be significant precursors for the preparation of nano-sized metal and metal oxides. The injection of organic surfactants such as oleic acid (OA) and triphenylphosphine into molecular precursors has yielded samples with size control, narrow size distributions and crystallinity of individual nanocrystals. Fourier transform infrared and X-ray photoelectron spectroscopy revealed that the OA molecules were adsorbed on the ferromagnetic nanoparticles by chemisorption. The temperature-dependent magnetization curve in zero-field-cooled and field-cooled exhibit weak ferromagnetism of the Co3O4 nanoparticles. At 300 K the remanent magnetization is 0.02 emu/g, the coercive field is 441 Oe and the magnetization at saturation is 1.05 emu/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号