首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches.  相似文献   

2.
Simple and efficient digestion of proteins, particularly hydrophobic membrane proteins, is of significance for comprehensive proteome analysis using the bottom-up approach. We report a microwave-assisted acid hydrolysis (MAAH) method for rapid protein degradation for peptide mass mapping and tandem mass spectrometric analysis of peptides for protein identification. It uses 25% trifluoroacetic acid (TFA) aqueous solution to dissolve or suspend proteins, followed by microwave irradiation for 10 min. This detergent-free method generates peptide mixtures that can be directly analyzed by liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) without the need of extensive sample cleanup. LC-MALDI MS/MS analysis of the hydrolysate from 5 microg of a model transmembrane protein, bacteriorhodopsin, resulted in almost complete sequence coverage by the peptides detected, including the identification of two posttranslational modification sites. Cleavage of peptide bonds inside all seven transmembrane domains took place, generating peptides of sizes amenable to MS/MS to determine possible sequence errors or modifications within these domains. Cleavage specificity, such as glycine residue cleavage, was observed. Terminal peptides were found to be present in relatively high abundance in the hydrolysate, particularly when low concentrations of proteins were used for MAAH. It was shown that these peptides could still be detected from MAAH of bacteriorhodopsin at a protein concentration of 1 ng/microl or 37 fmol/microl. To evaluate the general applicability of this method, it was applied to identify proteins from a membrane protein enriched fraction of cell lysates of human breast cancer cell line MCF7. With one-dimensional LC-MALDI MS/MS, a total of 119 proteins, including 41 membrane-associated or membrane proteins containing one to 12 transmembrane domains, were identified by MS/MS database searching based on matches of at least two peptides to a protein.  相似文献   

3.
《Electrophoresis》2018,39(7):965-980
Two‐dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI‐MS, LC‐Q‐TOF MS and LC‐Orbitrap Velos MS for the identification of proteins within one spot. With LC‐Orbitrap Velos MS each Coomassie Blue‐stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large‐scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low‐abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE‐MS to separate at the protein species level. Therefore, 2DE coupled with high‐sensitivity LC‐MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom‐up LC‐MS investigations.  相似文献   

4.
The proteome, defined as an organism's proteins and their actions, is a highly complex end-effector of molecular and cellular events. Differing amounts of proteins in a sample can be indicators of an individual's health status; thus, it is valuable to identify key proteins that serve as 'biomarkers' for diseases. Since the proteome cannot be simply inferred from the genome due to pre- and posttranslational modifications, a direct approach toward mapping the proteome must be taken. The difficulty in evaluating a large number of individual proteins has been eased with the development of high-throughput methods based on mass spectrometry (MS) of peptide or protein mixtures, bypassing the time-consuming, laborious process of protein purification. However, proteomic profiling by MS requires extensive computational analysis. This article describes key issues and recent advances in computational analysis of mass spectra for biomarker identification.  相似文献   

5.
Multi-dimensional liquid-based separation is required for fractionation and mapping of complex protein mixtures from cells. A method that has been used as the first dimension in such separations is chromatofocusing (CF), which is based on generating a pH gradient on an anion exchange column. The use of pH in the first dimension is essential where pH is a fundamental property of proteins and can provide information on post-translationally modified forms of a protein. In this work, a micro-chromatofocusing technique is introduced which can separate microgram levels of proteins from cell lysates for further analysis by LC-MS/MS. It is shown that this method can analyze 10 microg of sample and detect nearly 700-800 proteins from ovarian cancer cell line lysates.  相似文献   

6.
Over the past several years, a large effort has been focused on improvements of two-dimensional (2-D) gel electrophoresis-based proteomics technology, and on development of novel approaches for proteome analysis. Here, we describe the application of an alternative strategy for the analysis of complex proteomes. The strategy combines isoelectric focusing in immobilized pH gradient strips (in-gel IEF), mass spectrometry (MS), and bioinformatics. A protein mixture is separated by in-gel IEF, and the entire strip is cut into a set of gel sections. Proteins in each gel section are digested with trypsin, and the tryptic peptides are subjected to liquid chromatography-nanoelectrospray-quadrupole ion-trap tandem mass spectrometry (LC-ESI-MS/MS). The LC-ESI-MS/MS data are used to identify the proteins through searches of a protein sequence database. Using this in-gel IEF-LC-MS/MS strategy, we have identified 127 proteins from a human pituitary. This study demonstrates the potential of the in-gel IEF-LC-MS/MS approach for analyses of complex mammalian proteomes.  相似文献   

7.
The introduction of "soft" desorption/ionization methods such as electrospray ionization and matrix-assisted laser desorption/ionization has determined a breakthrough in the application of mass spectrometry to the structural analysis of proteins. The contemporary advancement of bioinformatics, together with the possibility to combine these mass spectrometric methods with electrophoretic or chromatographic separation techniques has opened up the new field of proteome analysis and, more generally, has established these approaches as indispensable tools for protein and peptide analysis in complex mixtures, such as milk and milk- derived foods. Here, a necessarily not exhaustive series of current applications of mass spectrometry-based techniques for the characterization of milk proteins will be summarized. These include the characterization of milk protein polymorphism, determination of the structural modifications induced on milk proteins by industrial processes, investigation of milk adulterations and characterization of milk allergens.  相似文献   

8.
Identification of the serum proteome is a daunting analytical task due to the complex nature of the sample which has an extremely large dynamic range of protein components. This report addresses this issue by using centrifugal ultrafiltration to enrich the low-molecular-weight (LMW) serum proteome while decreasing the amount of abundant high-molecular-weight proteins. Reduction of the complex nature of the sample was achieved by fractionation of the LMW serum proteins using solution-phase isoelectric focusing (IEF). Multiple enzyme digestions are performed and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis of the tandem mass spectra resulted in the identification of 262 proteins belonging to LMW serum proteome. Our results demonstrate the effectiveness of this methodology to isolate and identify LMW proteins with improved confidence in the MS data acquired. In addition, our methodology can be combined with other multidimensional chromatography techniques performed on the peptide level to increase the number of identified proteins.  相似文献   

9.
《Electrophoresis》2017,38(24):3086-3099
Modified colloidal Coomassie Brilliant Blue (cCBB) staining utilising a novel destain protocol and near‐infrared fluorescence detection (nIRFD) rivals the in‐gel protein detection sensitivity (DS) of SYPRO Ruby. However, established DS estimates are likely inaccurate in terms of 2DE‐resolved proteoform ‘spots’ since DS is routinely measured from comparatively diffuse protein ‘bands’ following wide‐well 1DE. Here, cCBB DS for 2DE‐based proteomics was more accurately determined using narrow‐well 1DE. As precise estimates of protein standard monomer concentrations are essential for accurate quantitation, coupling UV absorbance with gel‐based purity assessments is described. Further, as cCBB is compatible with both nIRFD and densitometry, the impacts of imaging method (and image resolution) on DS were assessed. Narrow‐well 1DE enabled more accurate quantitation of cCBB DS for 2DE, achieving (sub)femtomole DS with either nIRFD or densitometry. While densitometry offers comparative simplicity and affordability, nIRFD has the unique potential for enhanced DS with Deep Imaging. Higher‐resolution nIRFD also improved analysis of a 2DE‐resolved proteome, surpassing the DS of standard nIRFD and densitometry, with nIRFD Deep Imaging further maximising proteome coverage. cCBB DS for intact proteins rivals that of mass spectrometry (MS) for peptides in complex mixtures, reaffirming that 2DE‐MS currently provides the most routine, broadly applicable, robust, and information‐rich Top‐down approach to Discovery Proteomics.  相似文献   

10.
A novel two-dimensional two-column liquid chromatography/mass spectrometry (LC/MS) technique is described in this work, where chromatofocusing (CF) has been coupled to nonporous reversed-phase (NPS-RP) HPLC to separate proteins from human breast epithelial whole cell lysates. The liquid fractions from NPS-RP-HPLC are readily amenable to direct on-line analysis using electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (ESI-TOFMS). A key advantage of this technique is that proteins can be 'peeled off' in the liquid phase from the CF column according to their isoelectric points (pI) in the first chromatographic separation dimension. The NPS-RP-HPLC column further separates these pI-focused fractions based upon protein hydrophobicity as the second chromatographic dimension. The third dimension involves on-line molecular weight determination using ESI-TOFMS. As a result, this method has the potential to be fully automated. In addition, a 2-D protein map of pI versus molecular weight is generated, which is analogous to a 2-D gel image. Thus, this technique may provide a means to study differential expression of proteins from whole cell lysates.  相似文献   

11.
Recent advances in capillary separations for proteomics   总被引:1,自引:0,他引:1  
Cooper JW  Wang Y  Lee CS 《Electrophoresis》2004,25(23-24):3913-3926
The sequencing of several organisms' genomes, including the human's one, has opened the way for the so-called postgenomic era, which is now routinely coined as "proteomics". The most basic task in proteomics remains the detection and identification of proteins from a biological sample, and the most traditional way to achieve this goal consists of protein separations performed by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Still, the 2-D PAGE-mass spectrometry (MS) approach remains lacking in proteome coverage (for proteins having extreme isoelectric points or molecular masses as well as for membrane proteins), dynamic range, sensitivity, and throughput. Consequently, considerable efforts have been devoted to the development of non-gel-based proteome separation technologies in an effort to alleviate the shortcomings in 2-D PAGE while reserving the ability to resolve complex protein and peptide mixtures prior to MS analysis. This review focuses on the most recent advances in capillary-based separation techniques, including capillary liquid chromatography, capillary electrophoresis, and capillary electrokinetic chromatography, and combinations of multiples of these mechanisms, along with the coupling of these techniques to MS. Developments in capillary separations capable of providing extremely high resolving power and selective analyte enrichment are particularly highlighted for their roles within the broader context of a state-of-the-art integrated proteome effort. Miniaturized and integrated multidimensional peptide/protein separations using microfluidics are further summarized for their potential applications in high-throughput protein profiling toward biomarker discovery and clinical diagnosis.  相似文献   

12.
Elijah N.MCCOOL  孙良亮 《色谱》2019,37(8):878-886
自顶向下蛋白质组学的一个重要难题是缺乏与质谱可以在线连用并且可以提供高效蛋白质分离的液相分离技术。毛细管区带电泳与纳升反相色谱都可以与质谱在线连用,并且在复杂蛋白质样品分析方面也都有了显著的提升。在这里,我们首次比较了先进的纳升反相色谱-串联质谱与毛细管区带电泳-串联质谱平台用于自顶向下蛋白质组学分析。相对于纳升反相色谱-质谱而言,毛细管区带电泳-质谱可以将标准蛋白质样品的消耗量降低10倍,而且保持与纳升反相色谱-质谱相当的蛋白质信号强度。有意思的是,与毛细管区带电泳-质谱相比,纳升反相色谱-质谱可以获得更高的蛋白质分子的气相价态。这个现象可能是由于反相流动相中的高浓度乙腈使得蛋白质变性的更加充分。从1微克的大肠杆菌蛋白质样品中,毛细管区带电泳-串联质谱可以鉴定到159个蛋白质和513个蛋白质变体,而纳升反相色谱-串联质谱仅鉴定到105个蛋白质和277个蛋白质变体。当将大肠杆菌蛋白质的上样量提高到8微克时,纳升反相色谱-串联质谱可以鉴定到245个蛋白质和1004个蛋白质变体。由于纳升反相色谱-串联质谱具有比毛细管区带电泳-串联质谱更高的上样量与更宽的分离窗口,当蛋白质样品量不受限制时,纳升反相色谱-串联质谱具有明显的优势。但是,在痕量样品分析方面,毛细管区带电泳-串联质谱具有更大的潜力。  相似文献   

13.
Current nano-scale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) approaches in proteome research are reviewed from an analytical perspective. For comprehensive analysis of cellular proteins, analytical methods with higher resolution, sensitivity, and wider dynamic range are required. Miniaturized LC coupled with tandem mass spectrometry is currently one of the most versatile techniques. In this review, the current status of nanoLC-MS/MS systems as well as data management systems is addressed. In addition, the future prospects for complete proteomics are discussed.  相似文献   

14.
Capillary zone electrophoresis (CZE)–tandem mass spectrometry (MS/MS) has recently attracted attention as a tool for shotgun proteomics. However, its performance for this analysis has so far fallen far below that of reversed‐phase liquid chromatography (RPLC)–MS/MS. The use of a CZE method with a wide separation window (up to 90 min) and high peak capacity (ca. 300) is reported. This method was coupled to an Orbitrap Fusion mass spectrometer through an electrokinetically pumped sheath‐flow interface for the analysis of complex proteome digests. Single‐shot CZE–MS/MS lead to the identification of over 10 000 peptides and 2100 proteins from a HeLa cell proteome digest in approximately 100 min. This performance is nearly an order of magnitude better than earlier CZE studies and is within a factor of two to four of the state‐of‐the‐art nano ultrahigh‐pressure LC system.  相似文献   

15.
The separation of complex peptide mixtures in shotgun proteome analysis using a 2D separation scheme encompassing reversed-phase × ion-pair reversed-phase (IP-RP) liquid chromatography coupled online to electrospray ion trap mass spectrometry (MS) has been shown earlier to be superior in terms of separation efficiency and technical robustness compared to the classically used separation scheme encompassing strong cation exchange × IP-RP-chromatography in shotgun proteome analysis. In the present study, this novel separation scheme was coupled offline to matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF-MS for the analysis of the same sample, a tryptic digest of the cytosolic proteome of the bacterium Corynebacterium glutamicum. Compared to the earlier study, the MALDI-based platform led to a significantly increased number of peptides (7,416 vs. 2,709) and proteins (1,208 vs. 468, without single peptide-based identifications), respectively. This represents the majority of all predicted cytosolic proteins in C. glutamicum. The high proteome coverage, as well as the large number of low-abundant proteins identified with this improved analytical platform, pave the way for new biological studies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Capillary isoelectric focusing (CIEF) can provide high-resolution separations of complex protein mixtures, but until recently it has primarily been used with conventional UV detection. This technique would be greatly enhanced by much more information-rich detection methods that can aid in protein characterization. We describe progress in the development of the combination of CIEF with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and its application to proteome characterization. Studies have revealed 400-1000 putative proteins in the mass range of 2-100 kDa from total injections of approximately 300 ng protein in single CIEF-FTICR analyses of cell lysates for both Escherichia coli (E. coli) and Deinococcus radiodurans (D. radiodurans). We also demonstrate the use of isotope labeling of the cell growth media to improve mass measurement accuracy and provide a means for quantitative proteome-wide measurements of protein expression. The ability to make such comprehensive and precise measurements of differences in protein expression in response to cellular perturbations should provide new insights into complex cellular processes.  相似文献   

17.
In the screening of complex mixtures, for example combinatorial libraries, natural extracts, and metabolic incubations, different approaches are used for integrated bioaffinity screening. Four major strategies can be used for screening of bioactive mixtures for protein targets—pre-column and post-column off-line, at-line, and on-line strategies. The focus of this review is on recent developments in post-column on-line screening, and the role of mass spectrometry (MS) in these systems. On-line screening systems integrate separation sciences, mass spectrometry, and biochemical methodology, enabling screening for active compounds in complex mixtures. There are three main variants of on-line MS based bioassays: the mass spectrometer is used for ligand identification only; the mass spectrometer is used for both ligand identification and bioassay readout; or MS detection is conducted in parallel with at-line microfractionation with off-line bioaffinity analysis. On the basis of the different fields of application of on-line screening, the principles are explained and their usefulness in the different fields of drug research is critically evaluated. Furthermore, off-line screening is discussed briefly with the on-line and at-line approaches.  相似文献   

18.
Two-dimensional gel electrophoresis (2-DE) enables separation of complex mixtures of proteins on a single polyacrylamide gel according to isoelectric point, molecular weight, solubility, and relative abundance. For this reason, 2-DE together with mass spectrometry (MS) has become a key technology in proteome analysis. The introduction of immobilised pH gradients (IPGs) for isoelectric focusing of proteins affords improved reproducibility and permits full-scale proteome analyses to be undertaken. Whilst broad-range IPGs are useful for investigating simple proteomes (e.g. Mycoplasma genitalium) it is becoming clear that additional resolving power is needed for separating the more complex proteomes of eukaryotic organisms. The use of narrow-range and very narrow-range IPGs provides the means with which to dissect a complex proteome. We have compared very narrow-range IPGs (3.5-4.5L, 4-5L, 4.5-5.5L, 5-6L, and 5.5-6.7L) with broad- (3-10NL) and narrow-range IPGs (4-7L and 6-9L) for the visualisation of the human heart proteome. The superior ability of very narrow-range IPGs to separate different protein species and isoforms, compared with 3-10NL and 4-7L 2-D gels is demonstrated. The results are supported by MS identifications which further show that reduction of the number of comigrating protein species results in less ambiguous and more reliable database search results.  相似文献   

19.
A wide-pore (30 nm) reversed-phase column (Intrada WP-RP, particle size 3 μm) was recently utilized for protein separation in differential proteomics analysis with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS), and exerted a tremendous effect on finding biomarkers (e.g., for breast cancer). Further high-performance separation is required for highly complex protein mixtures. A recently prepared non-porous small-particle reversed-phase column (Presto FF-C18, particle size: 2 μm) was expected to more effectively separate derivatized protein mixtures than the wide-pore column. A preliminary experiment demonstrated that the peak capacity of the former was threefold greater than that of the latter in gradient elution of a fluorogenic derivatized model peptide, calcitonin. The FD-LC-MS/MS method with a non-porous column was then optimized and applied to separate liver mitochondrial proteins that were not efficiently separated with the wide-pore column. As a result, high-performance separation of mitochondrial proteins was accomplished, and differential proteomics analysis of liver mitochondrial proteins in a hepatitis-infected mouse model was achieved using the FD-LC-MS/MS method with the non-porous column. This result suggests the non-porous small-particle column as a replacement for the wide-pore column for differential proteomics analysis in the FD-LC-MS/MS method.  相似文献   

20.
To identify age-related proteins in small regions of mouse brain, we improved a proteomics approach, fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS), and applied the method to the differential proteome analysis of aging in cerebral cortex, hippocampus and brainstem. The method showed good accuracy with RSDs <10% for between-day protein peak heights, and much better sensitivity for the detection of proteins compared to other proteomics approaches. The existence of 28 regionally specific age-related proteins in mouse brain was demonstrated. These results verified that the small brain regions could be the targets for proteome analysis by the FD-LC-MS/MS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号