首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
3D复合材料中脱层的屈曲和后屈曲分析   总被引:2,自引:1,他引:2  
利用von Karman非线性薄板理论,借助Taylor级数展开方法,求解了3D复合材料中圆形薄膜脱层的屈曲和后屈曲问题,其中着重分析了横向纤维搭桥约束作用对脱层屈曲性能的影响。大量的计算和分析发现,与无搭桥脱层的特征不同,纤维搭桥不仅起到了抑制脱层演化发展的作用,而且也会导致脱层屈曲模态的突变,从而大大改善了结构性能,提高了结构的剩余强度和使用寿命。  相似文献   

2.
李跃宇 《力学季刊》2000,21(3):376-379
脱层是复合材料层板结构中主要的缺陷形式之一。当脱层层板受到压力载荷的作用会造成脱层的局部屈曲和扩展,从而使结构的强度和刚度大为降低。含脱层层板的弯曲问题包含了脱层的压缩问题,却比压缩问题更加复杂。本文对含穿透脱层层板在纯弯载荷作用下的后屈曲问题进行了基于一阶剪切层板理论的几何非线性有限元分析,运用虚裂纹闭合技术求解了纯弯载荷作用下的脱层尖端的能量释放率各型分量,并用脱层扩展判据求解了脱层起始扩展载荷。  相似文献   

3.
轴压层合结构脱层屈曲及其扩展研究进展   总被引:3,自引:0,他引:3  
脱层及其进一步扩展可以降低层合结构的强度.首先简单介绍了脱层的一般概念、起因及其分类.从一维脱层、二维脱层和柱壳脱层三个方面介绍了脱层问题的研究概况.指出拉弯耦合和横向剪切效应对脱层结构的屈曲载荷和后屈曲特性影响很大;对于不同的材料特性和尺寸比率,脱层结构的屈曲模态和最终承载能力也不同.最后提出了需进一步深入研究的问题   相似文献   

4.
层板脱层的能量释放率分析   总被引:3,自引:1,他引:3  
含脱层的层板在承受压缩载荷作用时,很容易发生局部屈曲,导致脱层扩展和结构失效.本文利用可动边界变分问题对脱层扩展进行了分析,导出了脱层前缘各点处的能量释放率表达式.本文还对浅部椭圆脱层进行计算分析,指出:其能量释放率沿脱层边界有很大变化,脱层的扩展方向取决于脱层的形状、受载方式及铺层方向.  相似文献   

5.
当一层比较硬的薄膜被封闭在上下两层柔性层中,组成了三层材料结构.在压应力的作用下,这层薄膜可能会发生屈曲失稳.由可弯曲电路封装在柔性层中组成的三层材料系统能进一步提高其弯曲性能的事实得到启发,不同于广泛研究的双层材料结构表面屈曲问题,从理论上分析三层材料结构在压应力作用下的刚硬薄膜的正弦模态屈曲问题.柔性层和刚硬薄膜材料假定皆为各向同性.由于薄膜厚度远远小于柔性层厚度,柔性层在理论分析中认为是无穷厚的.刚硬薄膜可以用非线性薄板模拟,其变形为小应变但是允许有限转动,用于描述屈曲时的状态.利用线性扰动分析,得到了屈曲临界薄膜应力,波数和平衡状态下的波幅的解析表达式.结果表明,针对不同的刚硬薄膜和柔性层的弹性模量,当刚硬薄膜相对于上下柔性层越硬,就越容易发生界面屈曲.  相似文献   

6.
微尺度金属薄膜的脱粘和屈曲严重影响着膜基结构的性能和使用寿命。本文对微尺度的金属铜薄膜在残余应力和外部压力共同作用下的脱粘屈曲和后屈曲模式进行了研究,用自行设计的单轴对称加载装置进行压力加载,用一台光学显微镜观察薄膜表面的屈曲形貌。在外力作用下薄膜会出现垂直于加载方向的直线型屈曲,但在外力卸载过程中该屈曲并不稳定,会演化成电话线型屈曲,完全卸载后形成泡状屈曲。再次加载后,恢复到直线型屈曲。研究表明:直线型屈曲的不稳定现象主要与薄膜的残余应力、基底的泊松比以及薄膜沿纵向与横向的应力比有关。  相似文献   

7.
研究了薄圆板及圆形脱层薄膜的轴对称后屈曲问题,并首次研究了轴对称后屈曲变形之后的二次非轴对称分叉屈曲问题.采用幂级数展开的方法,结合应用傅立叶级数得出非线性及非轴对称问题方程的解.并由此计算了圆形脱层薄膜与上述后屈曲变形的两个阶段对应的能量释放率.  相似文献   

8.
基于可动边界变分原理对层合梁脱层扩展进行了分析;考虑了脱层间的接触效应,建立了层合梁在横向线载荷作用下的非线性控制微分方程及相应的定解条件;应用Griffith准则导出了脱层前缘各点处的能量释放率表达式;通过算例讨论了脱层长度、脱层深度、几何尺寸、材料性质等因素对脱层扩展的影响.研究表明:脱层越长、越深、横向载荷越大,脱层越容易扩展;梁的长高比L/h及材料的E_(11)/E_(22)越大,脱层越不易发生扩展.  相似文献   

9.
薄膜/基底系统在信息科学以及微电子机械系统中有着十分重要的地位.薄膜中常会有压或拉的残余应力,因此薄膜/基底结构通常是工作在残余应力以及外加应力的联合作用下.根据结构的功用不同,其载荷方式也有不同,从而也导致了不同的破坏模式.压缩载荷下的脱粘屈曲是薄膜基底结构主要的破坏形式之一.本文使用磁控溅射镀膜技术,制作了压缩薄膜...  相似文献   

10.
本文基于用挠度和应力函数表示的考虑含纤维搭桥影响的正交各向异性材料矩形脱层屈曲非线性方程组,采用伽辽金法获得了非线性矩形脱层屈曲的理论解,给出了屈曲载荷随脱层中心挠度、纤维搭桥因子及脱层几何和材料参数变化的解析关系式.通过理论计算与有限元数值结果的对比,验证了解的正确性.本文解可有效用于分析材料参数和几何参数以及纤维搭桥作用对结构非线性脱层屈曲行为的影响,对于复合材料抗压屈曲强度设计具有重要参考价值.  相似文献   

11.
The buckling and post-buckling of clamped circular plate subjected to distributed radial compressed load is presented by using the high-order perturbation analysis and shooting method. The sixth-order solution shows good agreement with the FEM results in [11]. The results in this paper are applied to investigate the buckling and growth of pressed thin film delamination in the film/substrate system. Under a certain residual pressure in the thin film, two characteristic blister radiiR c andR g, the critical radius and growing radius respectively, are obtained. The numerical result shows that the growth criterion of delamination in [9,10] is not perfect. In variant residual stress or interface toughness, the conditions of no growth, stable growth and unstable growth of the delamination are obtained by comparing the driving force at the interface crack tip with the interface toughness.This project is supported by National Natural Science Foundation of China.  相似文献   

12.
Deposition processes control the properties of thin films; they can also introduce high residual stresses, which can be relieved by delamination and fracture. Tungsten films with high 1–2 GPa compressive residual stresses were sputter deposited on top of thin (below 100 nm) copper and diamond-like carbon (DLC) films. Highly stressed films store large amounts of strain energy. When the strain energy release rate exceeds the films' interfacial toughness, delamination occurs. Compressive residual stresses cause film buckling and debonding, forming open channels. Profiles of the buckling delaminations were used to calculate the films' interfacial toughness and then were compared to the adhesion results obtained from the superlayer indentation test. Tests were conducted in both dry and wet environments and a significant drop in film adhesion, up to 100 times was noticed due to the presence of moisture at the film/substrate interface.  相似文献   

13.
Some closed-form equations for the coupling problem of buckling and growth of circular delamination are derived by recourse to the moving boundary variational principle. The axisymmetric buckling of a circular delamination subjected to an equal bi-axial compression is analysed by using high-order perturbation expansion. The axisymmetric buckled delamination has the following properties : under a certain residual pressure, there exist two characteristic radii, namely the critical radius Rc and growing radius Rg; for a certain interface toughness, the blister has three configuration of stationary, stable growth and unstable growth with increasing the loads. Under a higher edge thrust, the nonaxisymmetric secondary buckling will occur on the base of axisymmetric buckling and then the toughness and the driving force of the interface crack will be different along the delamination front. So the growth of circular delamination will not be self-similar. Without any assumption regarding the delamination front, the configurations of the blister with several nonaxisymmetric buckling modes n = 2, 3, 6, 8 are simulated. The nonaxisymmetric growth process for the nonaxisymmetric buckling mode n = 2 is simulated also under a sequence of loads.  相似文献   

14.
In a thin film-substrate system in-plane compressive stress is commonly generated in the film due to thermal mismatch in operation or fabrication process. If the stress exceeds a critical value, part of the film may buckle out of plane along the defective interface. After buckling delamination, the interface crack at the ends may propagate. In the whole process, the compliance of the substrate compared with the film plays an important role. In this work, we study a circular film subject to compressive stress on an infinitely thick substrate. We study the effects of compliance of the substrate by modeling the system as a plate on an elastic foundation. The critical buckling condition is formulated. The asymptotic solutions of post-buckling deformation and the corresponding energy release rate of the interface crack are obtained with perturbation methods. The results show that the more compliant the substrate is, the easier for the film to buckle and easier for the interface crack to propagate after buckling.  相似文献   

15.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

16.
An improved analytical model is presented to analyze the delamination buckling of a bi-layer beam-column with a through-the-width delamination. Both the transverse shear deformation and local delamination tip deformations are taken into consideration, and two delaminated sub-layers as well as two substrates in the intact (un-delaminated) regions are modeled as individual Timoshenko beams. A deformable interface is introduced to establish the continuity condition between the two substrates in the intact regions. Consequently, a flexible joint is formed at the delamination tip, and it is different from the conventional rigid joint given in most of studies in the literature, in which the local delamination tip deformations are completely ignored. In contrast to the local delamination buckling in our previous study (Qiao et al., 2010), the present model accounts for the global deformations of the intact region in the delaminated composite beam-column, thus capable of capturing the buckling mode shape transitions from the global, to global–local coexistent, and to local buckling for asymmetric delamination as the interface delamination increases. Good agreement of the present analytical solutions with the full 2-D elastic finite element analysis demonstrates the local deformation effects around the delamination tip and verifies the accuracy of the present model. Parametric studies are conducted to investigate the effects of loading eccentricity, delaminated sub-layer thickness ratio, and interface compliance on the critical buckling load for the delaminated composite beam-column. Transitions of buckling modes from the global to local delamination buckling are also disclosed as the thickness of one sub-layer reduces from the thick sub-layer to a thin film. The developed delamination buckling solution facilitates the design analysis and optimization of laminated composite structures, and it can be used with confidence in buckling analysis of delaminated composite structures.  相似文献   

17.
Summary Buckling and postbuckling solutions to circular delamination constrained by transversal restoring forces, which occur extensively in stitched or woven composites with three-dimensional (3D) reinforcement, are obtained by using von Karman's geometrically nonlinear thin plate theory by means of Taylor's series expansion. The through-thickness tows are assumed to provide continuous and linear restoring tractions, opposing the deflection of the annular delaminated region adjacent to a penny-shaped crack. When the end of the delaminated layer is clamped, and the deflection is permitted in the positive direction of the z-axis only, there exists a characteristic delamination radius a * for initial buckling. In the case that the initial delamination radius a 0 exceeds a *, it will consist of waves whose sizes decrease gradually, as they are apart from the delamination center with larger distances, and will usually not span the whole crack region. Therefore, buckling profiles can be divided into two types: (1) lacking contact phenomena between the delaminated layer and the base plate; (2) having contact surfaces inside the delamination region. In this paper, growth laws of buckling, postbuckling and growth of delamination at lacking contact surface are discussed. The corresponding stability of the delamination growth under fixed boundary load is studied, and the dependence of stable scope upon the fracture toughness of the composite and the elastic constant of bridging fiber is summarized. It follows from the analysis that bridging can increase the load-bearing capacity of composite structure, improve its mechanical performances and restrain the growth of delamination. Received 23 November 1998; accepted for publication on 13 January 1999  相似文献   

18.
ANALYSIS ON BUCKLING AND POSTBUCKLING OF DELAMINATION IN 3D COMPOSITES   总被引:2,自引:0,他引:2  
In this paper, the problem of axisymmetric buckling and postbuckling of a circular thin-film delamination bridged by through-thickness fiber tows in 3D composites is presented. An iterativeprocedure based on Taylor's series expansion is used to generate a family of nondimensionalized post-buckling solutions of the above problem by yon Karman's nonlinear plate theory. Attention is fo-cused, herein, on the effects of the bridge force of through-thickness fibers on the buckling and post-buckling behavior of the delamination. It is found that fiber bridge not only increases the ability of re-sisting delamination buckling and postbuckling, but also brings on the jump of the delamination deflec-tion mode during the postbuckling phase. Consequently the behavior of the composite structure with de-lamination is greatly improved, such as increasing the residual strength and prolonging the service life.  相似文献   

19.
An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat substrate, the present problem is not a bifurcation problem. Crack closure at sufficiently high stress levels are shown to occur. Results show a very strong dependency on fracture mechanical parameters of the angle of the corner including the range of parameters where crack closure occurs. Analytical results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place.  相似文献   

20.
Nonlinear buckling of elastic thin films on compliant substrates is studied by modeling and simulations to reveal the roles of pre-strain, elastic modulus ratio, and interfacial properties in morphological transition from wrinkles to buckle-delamination blisters. The model integrates an interfacial cohesive zone model with the Föppl–von Kármán plate theory and Green function method within the general framework of energy minimization. A kinetics approach is developed for numerical simulations. Subject to a uniaxial pre-strain, the numerical simulations confirm the analytically predicted critical conditions for onset of wrinkling and wrinkle-induced delamination, with which a phase diagram is constructed. It is found that, with increasing pre-strain, the equilibrium configuration evolves from flat to wrinkles, to concomitant wrinkles and buckle-delamination, and to an array of parallel straight blisters. The height and width of the buckle-delamination blisters can be approximately described by a set of scaling laws with respect to the pre-strain and interfacial toughness. Subject to an equi-biaxial pre-strain, the critical conditions are determined numerically to construct a similar phase diagram for the buckling modes. Moreover, by varying the pre-strain, modulus ratio, and interfacial toughness, a rich variety of equilibrium configurations are simulated, including straight blisters, and network blisters with or without wrinkles. These results provide considerable insight into diverse surface patterns in layered material systems as a result of the mechanical interactions between the film and the substrate through their interface, which suggests potential control parameters for designing specific surface patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号