首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monodisperse polystyrene latex particles with molecular weight on the order of 106 were used as inert diluents for the preparation of monodisperse porous styrene-divinylbenzene copolymer particles via seeded emulsion polymerization techniques. Mercury porosimetry and nitrogen adsorption-desorption isotherms were used to assess pore structure and pore size distribution. Pore size distribution was very sensitive to the molecular weight of the polystyrene latex particles used as inert diluent. Qualitative evidence from the techniques used indicated that the monodisperse porous polymer particles were macroporous (average pore diameter > 500 Å) in nature. As the molecular weight of the linear polymer decreased, the porous structure of the polymer particles ranged in complexity across the spectrum of macro/mesopore structures. Scanning electron microscope results indicated the existence of voids between the microspheres and their agglomerates within the porous polymer particle, and nitrogen adsorption isotherms confirmed that the pores were due to interstices between these crosslinked microspheres and agglomerates.  相似文献   

2.
Polymerization of vinyltoluene (VT) in quaternary microemulsions containing cetyltrimethylammonium bromide (CTAB) as the cationic surfactant is studied using laser Raman spectroscopy (LRS) and dilatometry. The influences of water soluble (potassium peroxodisulphate, ammonium peroxodisulphate) and oil soluble (azobisisobutyronitrile, benzoyl peroxide) initiators, monomer, surfactant, cosurfactants (n-alcohol and bifunctional alcohols) and temperature on the rates of polymerization (R p), energy of activation (Ea), particle diameter (D), number of polymer particles (N p), molecular weight of polyvinyltoluene (M v) and number of polymer chains per latex particle (N pc) are investigated. The dependencies of the kinetic and latex size parameters on the initiators and cosurfactants are discussed in terms of the efficiency of the initiators in initiating the polymerization and on the interfacial partitioning behavior of various cosurfactants. The polymerization mechanism seems to follow Smith Ewart Case II hypothesis with two distinct rate regions. Final polymer microlatexes are found to lie within 10–50 nm as observed by transmission electron microscopy (TEM). Molecular weights are in the range of (1 to 5)×106. Each latex particle contains one to three polymer chains.  相似文献   

3.
The radiation-induced emulsifier-free emulsion polymerization of tetrafluoroethylene was carried out at an initial pressure of 2–25 kg/cm2, temperature of 30–110°C, and under a dose rate of 0.57 × 104?3.0 × 104 rad/hr. The rate of polymerization was shown to be proportional to 1.0 and 1.3 powers of the dose rate and initial pressure, respectively, and is maximal at about 70°C. The molecular weight of polytetrafluoroethylene (PTFE) lies in the range of 105?106, increases with reaction time in the early stage of polymerization, and is maximal at 70°C but is almost independent of the dose rate. An interesting discovery is that PTFE, a hydrophobic polymer, forms as a stable latex in the absence of emulsifier. When PTFE latex coagulates during polymerization under certain conditions, the polymerization rate decreases, probably because polymerization proceeds mainly on the polymer particle surface. The observed rate acceleration and successive increase in polymer molecular weight may be due to slow termination of propagating radicals in the rigid PTFE particles.  相似文献   

4.
Hydroxy-functional macrodisulfides have been synthesized by atom transfer radical polymerization of 2-hydroxyethyl methacrylate or 2-hydroxypropyl methacrylate in 2-propanol. Mean degrees of polymerization of the polymer chains beside the disulfide were fixed at 30, 60, and 90; since ATRP has reasonably good living character, the molecular weight distribution is relatively narrow. Furthermore, the macrodisulfides were reduced to synthesize corresponding thiol-terminated polymers with relatively narrow molecular weight distributions. 1H nuclear magnetic resonance and gel permeation chromatography were used to characterize the macrodisulfides and thiol-terminated polymers in terms of their chemical structure, molecular weight, and polydispersity, respectively. Dispersion polymerizations of styrene using the thiol-terminated hydroxy-functional polymers as a transtab (chain transfer agent + colloidal stabilizer) in ethanol resulted in colloidally stable submicrometer-sized polystyrene latex particles. Scanning electron microscopy, Fourier transform infrared spectroscopy, and elemental microanalysis were used to characterize the particles in terms of their morphologies, particle sizes and their distributions, and chemical compositions.  相似文献   

5.
Initiation of polymerization in styrene oil-in-water microemulsions by water-soluble potassium persulfate of oil-soluble 2,2′-azobis-(2-methyl butyronitrile) at 70°C gave stable latexes which were bluish and less translucent than the original microemulsions. The effects of initiator concentration, polymerization temperature, and monomer concentration on the kinetics, particle size distributions, and molecular weight distributions were investigated. The kinetics of polymerization were measured by dilatometry. In all cases, the polymerization rate shows only two intervals, which increased to a maximum and then decreased. There was no apparent constant rate period and no gel effect. A longer nucleation period was found for polymerizations initiated by potassium persulfate as compared to 2,2′-azobis-(2-methyl butyronitrile). The small latex particle size (20–30 nm) and high polymer molecular weight (1–2 × 106) implies that each latex particle consists of two or three polystyrene molecules. The maximum polymerization rate and number of particles varied with the 0.47 and 0.40 powers of potassium persulfate concentration, and the 0.39 and 0.38 powers of 2,2′-azobis-(2-methyl butyronitrile) concentration, respectively. This is consistent with the 0.4 power predicted by Smith–Ewart Case 2 kinetics. Microemulsion polymerizations of styrene–toluene mixtures at the same oil-water phase ratio gave lower polymerization rates and lower molecular weights, but the same latex particle size as with styrene alone. A mechanism is proposed, which comprised initiation and polymerization in the microemulsion droplets, by comparing the kinetics of microemulsion polymerization with conventional emulsion and miniemulsion polymerization systems.  相似文献   

6.
An emulsion polymerization of styrene in the presence of an amphoteric emulsifier of the betaine type; N,N-dimethyl-n-laurylbetaine (LNB), has been studied at various pH values. The relationships between the physicochemical properties of LNB aqueous solutions, the emulsion polymerization process and the characteristics of the synthesized latex particles were studied under various pH conditions. The polymerization rate and the particle number concentration decreased with increasing pH of LNB aqueous solution and changed in shape at both ca. pH 4 and pH 8–10. The properties of LNB aqueous solution also changed with the pH and changed in shape at the same pH as that of the emulsion polymerization. These pH values were in good agreement with the pH at which the LNB molecule changed its ionic form. The number of synthesized latex particles was proportional to the number of LNB micelles in the solution, below pH 10. The particle size of the synthesized latex particles and the molecular weight of the latex polymers also changed with the properties of LNB aqueous solutions, accompanying the change of the ionic form of LNB molecules.  相似文献   

7.
In the presence of β‐cyclodextrin (β‐CD), reversible addition–fragmentation chain transfer (RAFT) polymerization has been successfully applied to control the molecular weight and polydispersity [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] in the miniemulsion polymerization of butyl methacrylate, with 2‐cyanoprop‐2‐yl dithiobenzoate as a chain‐transfer agent (or RAFT agent) and 2,2′‐azoisobutyronitrile (AIBN) as an initiator. β‐CD acted as both a stabilizer and a solubilizer, assisting the transportation of the water‐insoluble, low‐molecular‐weight RAFT agent into the polymerization loca (i.e., droplets or latex particles) and thereby ensuring that the RAFT agent was homogeneous in the polymerization loca. The polymers produced in the system of β‐CD exhibited narrower polydispersity (1.2 < Mw/Mn < 1.3) than those without β‐CD. Moreover, the number‐average molecular weight in the former case could be controlled by a definite amount of the RAFT agent. Significantly, β‐CD was proved to have a favorable effect on the stability of polymer latex, and no coagulum was observed. The effects of the concentrations of the RAFT agent and AIBN on the conversion, the molecular weight and its distribution, and the particle size of latices were investigated in detail. Furthermore, the influences of the variations of the surfactant (sodium dodecyl sulfate) and costabilizer (hexadecane) on the RAFT/miniemulsion polymerization were also studied. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2931–2940, 2005  相似文献   

8.
Nanosized polystyrene latexes with high polymer contents were obtained from an emulsifier-free process by the polymerization of styrene with ionic comonomer, nonionic comonomer, or both. After seeding particles were generated in an initial emulsion system consisting of styrene, water, an ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2-hydroxyethyl methacrylate (HEMA)], and potassium persulfate, most of the styrene monomer or a mixture of styrene and HEMA was added dropwise to the polymerizing emulsion over 6 h. Stable latexes with high polystyrene contents (≤25%) were obtained. The latex particle weight-average diameters were largely reduced (41 nm) by the continuous addition of monomer(s) compared with those (117 nm) obtained by the one-pot polymerization method. Latex particles varied from about 30 to 250 nm in diameters, whereas their molar masses were within 104 to 105 g/mol. The effect of the comonomer concentration on the number of polystyrene particles per milliliter of latex and the weight-average molar masses of the copolymers during the polymerization are discussed. The surface compositions of the latex particles were analyzed by X-ray photoelectron spectroscopy, which indicated that the surface of the latex particles was significantly enriched in NaSS, HEMA, or both. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1634–1645, 2001  相似文献   

9.
The radiation-induced polymerization of ethylene in cyclohexane was carried out in a reactor of 100 ml capacity under a range of temperature of 25–150°C, dose rate of 4.1 × 104–2.9 × 105 rad/hr, pressure of 200 kg/cm2, and amount of cyclohexane of 20–90 ml. The polymerization was found to proceed at a steady state from the beginning. The polymerization rate is maximum at ca. 50 ml of cyclohexane. The dose rate exponent of the polymerization rate was 0.6 at every temperature from 25 to 150°C. The polymer molecular weight is in the range of 103–104, independent of dose rate, and decreases with increasing amount of cyclohexane. The molecular weight distribution is unimodal and narrow. Kinetic analysis of these results indicates that the polymerization proceeds via a simple scheme of homogeneous polymerization and the polymer molecular weight was determined by the chain transfer reaction which takes place mostly with cyclohexane. The unimodal and narrow molecular weight distribution is also consistent with the homogeneous polymerization scheme.  相似文献   

10.
An investigation of the grafting efficiency of methacrylamide during graft polymerization in natural rubber latex has shown that the efficiency is independent of the initiator and rubber concentrations but increases markedly with temperature. The overall activation energy of the graft polymerization was found to be 25 ± 2 kcal mole?1 greater than that for the corresponding homopolymerization. The molecular weight of the free homopolymer isolated from the graft copolymerization was very close to that of polymer isolated from the analogous homopolymerization, thus demonstrating that chain transfer with rubber hydrocarbon was unimportant. Electron micrographs of grafted and control latex particles confirm earlier conclusions that grafting occurs on the surface rather than the interior of the rubber particles.  相似文献   

11.
Hydroxy‐functional macroazoinitiators with central azo unit have been synthesized by atom transfer radical polymerization of 2‐hydroxyethyl methacrylate or 2‐hydroxypropyl methacrylate in methanol. The mean degrees of polymerization of the polymer chains beside the azo group were fixed at 30 and 60. Proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography were used to characterize the macroazoinitiators in terms of their chemical structure, molecular weight, and polydispersity, respectively. Dispersion polymerizations of styrene using the hydroxy‐functional macroazoinitiators as an inistab (initiator + colloidal stabilizer) in 2‐propanol or 2‐propanol/water media resulted in submicrometer‐sized polystyrene latex particles with hydroxy‐functional polymer hair. Electron microscopies, Fourier transform infrared spectrometer, thin layer chromatography, and 1H NMR were used to characterize the particles in terms of their morphologies, particle sizes, and their distributions and chemical compositions. The synthesized particles behaved as an effective particulate emulsifier for the stabilization of oil‐in‐water emulsions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Dispersion polymerization of styrene in polar solvents in the presence of hydroxypropyl cellulose (HPC) produces latex particles from ca. 1 to 26 μm depending on reaction parameters. Increasing the initiator concentration or temperature decreases the molecular weight, but increases the particle size and breadth of the size distribution. The decrease in molecular weight with increasing Ri, caused by larger initiator concentration or higher temperature, is expected based of fundamental kinetic relationships. The inverse correlation between size and rate of initiation is rationalized by polarity (stabilizing ability) of the grafted HPC-polystyrene formed in situ. High polar HPC-g-PS, which contains shorter graft polystyrene chain, stabilizes particles less effectively and this leads to larger particles. The primary influence of initial styrene concentration is a solvent effect: larger particles are obtained at high styrene concentration due to high solubility of polystyrene during the initial part of the reaction. The influence of the molecular weight of HPC is to change the polarity of the HPC-g-PS stabilizer. Comparison of particle growth of three critical polymerization systems suggests that the favorable continuous-phase solubility parameter for dispersion polymerization of styrene is around 11.6 (cal/mL)1/2. Too high or too low polarity generates particles with broad size distribution because large particles are formed during the initial stage and nucleation continues as the polymerization proceeds. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
The size, distribution, and number of PTFE particles formed by radiation-induced emulsifier-free polymerization were measured by electron microscope and automatic particle analyzer (centrifugation method). From the electron micrographs we found that the particles are formed within 5 min. The change in the number of polymer particles (np) with reaction time (t) depends on the relative concentration of growing polymer chains to stabilizing species produced by the radiolysis of water and monomer; that is, it was governed by TFE pressure/dose rate ratio and classified into three cases: case I, dnp/dt = 0 (e.g., at 3 × 104 rad/hr and 20 kg/cm2); case II, dnp/dt < 0 (e.g., at dose rate below 1.9 × 104 rad/hr and 20 kg/cm2); case III, dnp/dt > 0 (e.g., at 3 × 104 rad/hr and 2 kg/cm2). The polymer molecular weight above 106 is almost independent of the particle size. The polymerization loci are mainly on the surface of polymer particles dispersed in the aqueous phase in cases I and II except in the initial stage. In case III new particles are formed successively during polymerization. Therefore the polymerization loci are mainly in the aqueous phase. Especially in case I, we concluded that after the generation of particles the propagation proceeds mainly on the surface of polymer particles like the core shell model proposed by Granico and Williams.  相似文献   

14.
The gamma-radiation-induced polymerization of ethylene in the presence of 13–30 ml of tert-butyl alcohol was carried out under a pressure of 120–400 kg/cm2 at a dose rate of 1 × 103 to 2.5 × 104 rad/hr at 30°C with a 100 ml reactor. The polymerization rate and the molecular weight of the polymer increased with reaction time and pressure and decreased with amount of tert-butyl alcohol. The polymer yield increased almost proportionally with the dose rate, while the molecular weight was almost independent of it. These results were graphically evaluated, and the rate constants of initiation, propagation, and termination for various conditions were determined. No transfer was observed. On the basis of these results the role of tert-butyl alcohol in the polymerization is discussed.  相似文献   

15.
The role of chain transfer was studied for the radiation-induced polymerization of ethylene in precipitating media, namely n-butyl alcohol, tert-butyl alcohol and their mixtures. The affinities of those solvents for polyethylene are similar, but the chain-transfer coefficient of n-butyl alcohol is larger than that of tert-butyl alcohol. The polymerizations were carried out in a reactor of 100 ml under a pressure of 300 kg/cm2, at 60°C, dose rate of 3.07 × 104–1.75 × 105 rad/hr in the presence of 50 ml of solvents. The polymerization in tert-butyl alcohol shows the kinetic behavior characteristic of a heterogeneous polymerization, such as rate acceleration, high dose rate dependence of polymerization rate, and low dose rate dependence of polymer molecular weight, whereas the polymerization in n-butyl alcohol does not exhibit such behavior and gives polymer having a molecular weight much lower than that of polymer obtained in tert-butyl alcohol. The polymer formed in tert-butyl alcohol exhibits a bimodal molecular weight distribution measured by gel permeation chromatography. In mixed tert-butyl alcohol and n-butyl alcohol solvent, with increasing fraction of n-butyl alcohol, the two peaks not only shift to lower molecular weight but the higher molecular weight peak becomes relatively small. Eventually, the polymer formed in n-butyl alcohol exhibits a unimodal distribution. Those results are well explained on the basis of the proposed scheme for heterogeneous polymerization.  相似文献   

16.
A single-charge emulsion polymerization involving a monomer which is a good solvent for its polymer is considered. It is shown to be unlikely that within the polymerizing latex particles there are concentration gradients large enough measurably to affect the kinetics of the reaction. The average displacement of monomers due to Brownian motion within the latex particles and in the absence of concentration gradients is calculated. This diffusive mean free path, corresponding to an interval involving less than 1% change in conversion, is shown to be much longer than the radius of the latex particle. Consequently, loci where monomer concentration is perturbed by conversion to polymer are immediately swamped by unreacted monomer. Also, direct experimental evidence exists showing that the monomer concentration in latex particles is about the same when nonpolymerizing latex particles are saturated or during polymerization in the presence of monomer excess. The thermodynamics of saturation swelling preclude the possibility of the existence of large concentration gradients. The arguments that have been advocated in the literature for core–skin separation within polymerizing latex particles were based on conversion data which were thought to be linear with time, while a reexamination indicates that they were not. The observed core–skin separation obtained when butadiene or tritiated styrene were copolymerized with styrene in the presence of a polystyrene homopolymer seed latex has questionable relevance to single-charge homopolymerization. There are reasons to doubt that the distribution of co-monomers within latex particles can be frozen by their conversion to polymers in a two-stage emulsion polymerization.  相似文献   

17.
本文研究了在苯乙烯不外加乳化剂的乳液聚合体系中,加入王冠醚18-冠-6对聚合反应及其产物的影响。发现18-冠-6能起到相转移催化作用,并提出两相粒子成核机理,对实验结果作出了合理的解释。  相似文献   

18.
Batch emulsifier-free copolymerizations of styrene (S) and butyl acrylate (BuA) have been performed for a S/BuA weight ratio = 50/50 in the presence of two types of functional comonomers [methacrylic acid (MAA) at different pHs] or potassium sulfopropylmethacrylate (SPM) and two initiators [potassium persulfate or 4–4′azobiscyanopentanoic acid (AZO)]. The use of AZO/MAA system results in the formation of polymer particles with only surface carboxylic end groups. The particle size of the final latexes can be adjusted with the MAA concentration, provided the polymerization is carried out at pH > 6.5. However, the higher the MAA concentration, the sooner the polymerization levels off in conversion. With the K2S2O8/SPM system, particles bearing only sulfate and sulfonate groups are produced and the polymerization is complete. In that case, the particle size of the final latexes is smaller than with the previous system and 30% of the SPM is fixed on the particle surface, instead of 10% with MAA. Using SPM, a too high functional monomer concentration results in the latex destabilization caused by the formation of a large amount of polyelectrolytes. Kinetic studies indicate that most of the functional monomer is incorporated onto the particle surface during the last 30% conversion of the polymerization. A tentative explanation of such a behavior is discussed, based on the existence of two polymerization loci in the latex system.  相似文献   

19.
The polymerization of acrylamide in inverse microemulsions stabilized by Aerosol OT emulsifier and initiated with azobisisobutyronitrile (AIBN) or potassium persulfate (K2S2O8) has been investigated. The inverse polyacrylamide latexes formed are clear and highly stable. A dilatometric technique was used to follow the conversion of monomer at T = 45°C. The rate of polymerization is first order with respect to initial monomer concentration in the presence of AIBN, and is 1.5 order with K2S2O8. An inverse relationship between molecular weight and emulsifier concentration is found which suggests participation of the emulsifier in the initiation reaction. This is confirmed by the independence of the molecular weight of polyacrylamide on the concentration of the initiators. High values of the rate of polymerization are obtained combined with high molecular weights (up to 107). An important and novel feature of this microemulsion process is that each final latex particle consists of one single molecule of polyacrylamide in a collapsed state. This suggests kinetics which do not follow the Smith and Ewart theory but are characterized by continuous particle nucleation.  相似文献   

20.
Miniemulsion copolymerization of 50 : 50 weight fraction of styrene–methyl methacrylate monomer, using hexadecane as the cosurfactant, was carried out in both unseeded and seeded polymerizations. Effects of the hexadecane concentration and the ultrasonification time on the conversion–time curves and particle size of the final latex were investigated for unseeded polymerization. The kinetic and particle size distribution results showed that an increase in hexadecane concentration and ultrasonification time cause faster polymerization rate and smaller particle size. The mechanism of mass transport from miniemulsion droplets to polymer particles was also investigated for seeded polymerization. For this purpose a monomer miniemulsion was mixed with a fraction of a previously prepared miniemulsion latex particles prior to initiation of polymerization, using residual oil-soluble initiator in the seed latex. The concentration of hexadecane and a water-insoluble inhibitor (2,5 di-tert-butyl hydroquinone) in the miniemulsions were the main variables. Seeded polymerizations were also carried out in the presence of miniemulsion droplets containing a water-insoluble inhibitor and water-soluble initiator. The inhibitor concentration and the agitation speed during the course of polymerization were the experimental variables. The kinetic and particle size results from these seeded experiments suggested that collision between miniemulsion droplets and polymer particles may play a major role in the transport of highly water-insoluble compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号