首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A discontinuous Galerkin method by patch reconstruction is proposed for Stokes flows. A locally divergence-free reconstruction space is employed as the approximation space, and the interior penalty method is adopted which imposes the normal component penalty terms to cancel out the pressure term. Consequently, the Stokes equation can be solved as an elliptic system instead of a saddle-point problem due to such weak form. The number of degree of freedoms of our method is the same as the number of elements in the mesh for different order of accuracy. The error estimations of the proposed method are given in a classical style, which are then verified by some numerical examples.  相似文献   

2.
In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.  相似文献   

3.
This paper concerns a weak Galerkin method (WGM) for the diffraction of a time-harmonic incident wave impinging upon a one-dimensional periodic grating structure. The existence and uniqueness of the weak Galerkin solution to the grating problem are established using a variational approach. The convergence rate of the proposed WGM is systematically analyzed. Numerical simulations are presented to verify the efficiency of the WGM for solving grating problems.  相似文献   

4.
5.
In this paper, a weak Galerkin finite element method for the Oseen equations of incompressible fluid flow is proposed and investigated. This method is based on weak gradient and divergence operators which are designed for the finite element discontinuous functions. Moreover, by choosing the usual polynomials of degree i ≥ 1 for the velocity and polynomials of degree i ? 1 for the pressure and enhancing the polynomials of degree i ? 1 on the interface of a finite element partition for the velocity, this new method has a lot of attractive computational features: more general finite element partitions of arbitrary polygons or polyhedra with certain shape regularity, fewer degrees of freedom and parameter free. Stability and error estimates of optimal order are obtained by defining a weak convection term. Finally, a series of numerical experiments are given to show that this method has good stability and accuracy for the Oseen problem.  相似文献   

6.
This paper introduces a weak Galerkin (WG) finite element method for the Stokes equations in the primal velocity-pressure formulation. This WG method is equipped with stable finite elements consisting of usual polynomials of degree k≥1 for the velocity and polynomials of degree k?1 for the pressure, both are discontinuous. The velocity element is enhanced by polynomials of degree k?1 on the interface of the finite element partition. All the finite element functions are discontinuous for which the usual gradient and divergence operators are implemented as distributions in properly-defined spaces. Optimal-order error estimates are established for the corresponding numerical approximation in various norms. It must be emphasized that the WG finite element method is designed on finite element partitions consisting of arbitrary shape of polygons or polyhedra which are shape regular.  相似文献   

7.
Since the fundamental solution for transient Stokes flow in three dimensions is complicated it is difficult to implement discretization methods for boundary integral formulations. We derive a representation of the Stokeslet and stresslet in terms of incomplete gamma functions and investigate the nature of the singularity of the single- and double layer potentials. Further, we give analytical formulas for the time integration and develop Galerkin schemes with tensor product piecewise polynomial ansatz functions. Numerical results demonstrate optimal convergence rates.  相似文献   

8.
In this article, we present and analyze a stabilizer-free C0 weak Galerkin(SF-C0WG) method for solving the biharmonic problem. The SF-C0WG method is formulated in terms of cell unknowns which are C0 continuous piecewise polynomials of degree k + 2 with k≥0 and in terms of face unknowns which are discontinuous piecewise polynomials of degree k + 1. The formulation of this SF-C0WG method is without the stabilized or penalty term and is as simple as the C1 conformin...  相似文献   

9.
Kwak  Do Y.  Park  Hyeokjoo 《Numerical Algorithms》2022,91(1):449-471
Numerical Algorithms - We develop a formal construction of a pointwise divergence-free basis in the nonconforming virtual element method of arbitrary order for the Stokes problem introduced in Zhao...  相似文献   

10.
11.
12.
The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye (2011) for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established in Wang and Ye (2011). The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.  相似文献   

13.
The second order elliptic equation, which is also know as the diffusion-convection equation, is of great interest in many branches of physics and industry. In this paper, we use the weak Galerkin finite element method to study the general second order elliptic equation. A weak Galerkin finite element method is proposed and analyzed. This scheme features piecewise polynomials of degree $k\geq 1$ on each element and piecewise polynomials of degree $k-1\geq 0$ on each edge or face of the element. Error estimates of optimal order of convergence rate are established in both discrete $H^1$ and standard $L^2$ norm. The paper also presents some numerical experiments to verify the efficiency of the method.  相似文献   

14.
Endre Süli We develop a posteriori upper and lower error bounds for mixedfinite-element approximations of a general family of steady,viscous, incompressible quasi-Newtonian flows in a bounded Lipschitzdomain ; thefamily includes degenerate models such as the power law model,as well as non-degenerate ones such as the Carreau model. Theunified theoretical framework developed herein yields residual-baseda posteriori bounds which measure the error in the approximationof the velocity in the W1, r() norm and that of the pressurein the Lr'() norm, 1/r + 1/r' = 1, r (1, ).  相似文献   

15.
A family of discontinuous Galerkin finite element methods is formulated and analyzed for Stokes and Navier-Stokes problems. An inf-sup condition is established as well as optimal energy estimates for the velocity and estimates for the pressure. In addition, it is shown that the method can treat a finite number of nonoverlapping domains with nonmatching grids at interfaces.

  相似文献   


16.
A residual‐type a posteriori error estimator is proposed and analyzed for a modified weak Galerkin finite element method solving second‐order elliptic problems. This estimator is proven to be both reliable and efficient because it provides computable upper and lower bounds on the actual error in a discrete H1‐norm. Numerical experiments are given to illustrate the effectiveness of the this error estimator. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 381–398, 2017  相似文献   

17.
In this paper, we consider an incompressible quasi-Newtonian flow with a temperature dependent viscosity obeying a power law, and the thermal balance includes viscous heating. Some mathematical results such as the existence and uniqueness are established, finite element approximation based on an iterative solution scheme is proposed, and convergence analysis is presented.  相似文献   

18.
The purpose of this paper is twofold: (i) We show that the Fourier‐based Nonlinear Galerkin Method (NLGM) constructs suitable weak solutions to the periodic Navier–Stokes equations in three space dimensions provided the large scale/small scale cutoff is appropriately chosen. (ii) If smoothness is assumed, NLGM always outperforms the Galerkin method by a factor equal to 1 in the convergence order of the H 1‐norm for the velocity and the L2‐norm for the pressure. This is a purely linear superconvergence effect resulting from standard elliptic regularity and holds independently of the nature of the boundary conditions (whether periodicity or no‐slip BC is enforced). © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

19.
In this article, we introduce and analyze a weak Galerkin finite element method for numerically solving the coupling of fluid flow with porous media flow. Flows are governed by the Stokes equations in primal velocity‐pressure formulation and Darcy equation in the second order primary formulation, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers‐Joseph‐Saffman law. By using the weak Galerkin approach, we consider the two‐dimensional problem with the piecewise constant elements for approximations of the velocity, pressure, and hydraulic head. Stability and optimal error estimates are obtained. Finally, we provide several numerical results illustrating the good performance of the proposed scheme and confirming the optimal order of convergence provided by the weak Galerkin approximation. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1352–1373, 2017  相似文献   

20.
This article establishes a discrete maximum principle (DMP) for the approximate solution of convection–diffusion–reaction problems obtained from the weak Galerkin (WG) finite element method on nonuniform rectangular partitions. The DMP analysis is based on a simplified formulation of the WG involving only the approximating functions defined on the boundary of each element. The simplified weak Galerkin (SWG) method has a reduced computational complexity over the usual WG, and indeed provides a discretization scheme different from the WG when the reaction terms are present. An application of the SWG on uniform rectangular partitions yields some 5- and 7-point finite difference schemes for the second order elliptic equation. Numerical experiments are presented to verify the DMP and the accuracy of the scheme, particularly the finite difference scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号