首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Measurements of molecular weight averages and distributions have been made on three samples of narrow molecular size distribution polystyrene with molecular weights from 100, 000 to 400, 000 subjected to 60Co γ irradiation in vacuo for various doses within the pregel region+ G(X), the radiation chemical yield of crosslinking, has been determined as 0.043 ± 0.002 and G(S)/G(X), the ratio of scission to crosslinking, as 0.02; no effect of molecular weight was observed. By comparison with previous experimental results for polystyrene irradiated in air it has been established unequivocally that an oxygen environment leads to enhanced scission at the expense of crosslinking. Literature values of G(X) and G(S)/G(X) are reviewed in the light of these results and explanations are offered to account for major discrepancies.  相似文献   

2.
The effect of gamma irradiation on poly( -lactic acid) ( -PLA) and poly( -lactic acid) ( -PLA), has been examined using ESR spectroscopy and through analysis of the changes in molecular weight. The G values for radical formation of both polylactic acids have been calculated at 77 and 300 K; G(R) = 2.0 at 77 K and G(R) = 1.5 at 300 K for -PLA and G(R) = 2.4 at 77 K and G(R) = 1.2 at 300 K for -PLA. The ESR spectrum at 300 K for the polymers was assigned to one radical, resulting from H atom abstraction from the quaternary carbon atom. The G values for crosslinking and scission have also been determined for the polymers at 300 K; G(S) = 2.3 and G(X) = 0.0 for -PLA, G(S) = 2.4 and G(X) = 0.28 for -PLA.  相似文献   

3.
γ-Radiolysis of copolymers of styrene and methyl vinyl ketone shows that the introduction of pendant carbonyl groups markedly increases the G(s) value as compared to the homopolymer of styrene. The G(x) value is only slightly affected. These efficiencies are determined by employing an established statistical theory for random crosslinking and scission coupled with gel-permeation chromatography as the analytical tool required to follow the changes in the MWD of polymers. Also the G(H2) values are unaltered by the introduction of carbonyl groups in polystyrene. These results are in marked contrast to the effects of carbonyl groups in polyethylene when subjected to γ-radiolysis and can be attributed to the protective role played by the aromatic phenyl groups in polystyrene.  相似文献   

4.
Thermodynamic knowledge of the metal–ligand (M−L) σ-bond strength is crucial to understanding metal-mediated transformations. Here, we developed a method for determining the Pd−X (X=OR and NHAr) bond heterolysis energies (ΔGhet(Pd−X)) in DMSO taking [(tmeda)PdArX] (tmeda=N,N,N′,N′-tetramethylethylenediamine) as the model complexes. The ΔGhet(Pd−X) scales span a range of 2.6–9.0 kcal mol−1 for ΔGhet(Pd−O) values and of 14.5–19.5 kcal mol−1 for ΔGhet(Pd−N) values, respectively, implying a facile heterolytic detachment of the Pd ligands. Structure-reactivity analyses of a modeling Pd-mediated X−H bond activation reveal that the M−X bond metathesis is dominated by differences of the X−H and Pd−X bond strengths, the former being more influential. The ΔGhet(Pd−X) and pKa(X−H) parameters enable regulation of reaction thermodynamics and chemoselectivity and diagnosing the probability of aniline activation with Pd−X complexes.  相似文献   

5.
Solid-state 13C NMR spectroscopy has been used to determine the decrease in C?C bonds, formation of crosslinks and cis to trans isomerization during the γ irradiation of (a) > 99% cis, 1,4-polybutadiene, (b) 54% trans, 41% cis, 1,4-polybutadiene, and (c) 86% 1,2-polybutadiene. G(-cis C?C) and G(-trans C?C), were similar and decreased with dose from ≈ 40 for 0-1 MGy to 5 for 5-10 MGy. G(-double bonds) and G(crosslink) were comparable, indicating that crosslinking occurred through the double bonds. G(crosslink) was much higher than values derived from physical properties, confirming that NMR measures the total of inter- and intramolecular crosslinking (cyclization). The 1,2 polybutadiene was much more sensitive to crosslinking, and a value of G(-C?C) = 240 was obtained at low doses. Crosslinking evidently proceeds by a kinetic chain reaction in all three types of polybutadiene.  相似文献   

6.
An entirely new class of heterobimetallic homoleptic glycolate complexes of the type Nb(OGO)3{Ta(OGO)2} [where G=CMe2CH2CH2CMe2 (G1) (3); CMe2CH2 CHMe(G2) (4); CHMeCHMe (G3) (5); CH2CMe2CH2 (G4) (6); CMe2CMe2(G5) (7); CH2CHMeCH2 (G6) (8); CH2CEt2CH2 (G7) (9); CH2CMe(Prn)CH2 (G8) (10)] have been prepared by the reactions of Nb(OGO)2(OGOH) [G=G1 (1a); G2 (1b); G3 (1c); G4 (1d); G5 (1e); G6 (1f); G7 (1g); G8 (1h)] with Ta(OGO)2 (OPri) (G=G1 (2a); G2 (2b); G3 (2c); G4 (2d); G5 (2e) G6 (2f); G7 (2g); G8 (2h). In addition to the novel derivatives (2)(10), our earlier investigations on heterobimetallic glycolate-alkoxide derivatives have been extended to derivatives of the type Nb(OGO) [where M=A1 n=3, G=G3 (11);G4 (12); G6 (13) G7 (14); Gs (15); G9=CH2CH2CH2 (16) and M=Ti (n=4, G=G4) (17), Zr(n=4,G=G4) (18)], which are conveniently prepared by the reactions of metalloligands Nb(OGO)2(OGOH) [G=G3 (1c); G4 (1d); G6 (1f); G7 (1g); G8 (1h); G9 (1i)] with different metal alkoxides. All of these new complexes have been characterized by elemental analyses, molecular weight determinations, and spectroscopic (I.r. and 1H, 27Al-n.m.r.) studies. Structural features of the new derivatives have been elucidated on the basis of molecular weight and spectroscopic data.  相似文献   

7.
[Mo3S(S2)3(dtc)3]I, [Mo3S(SeS)3(dtc)3](dtc), and [Mo3Se(Se2)3(dtc)3](dtc) (dtc = N,N-diethyldithiocarbamate) were investigated by liquid SIMS-FTMS. The fragmentation pathways were essentially the same for the three compounds and can be explained by two types of fragmentation processes: stepwise abstraction of S/Se atoms as exemplified by the series [Mo3Xz(dtc)3]+ (4 ? z ? 7, X = S, Se), and ligand dissociation, as indicated by the generation of [Mo3Xz(dtc)2]+ (5 ? z ? 7, X = S, Se). The exclusive elimination of the Se-atoms from [Mo3S(Sax-Seeq)3(dtc)3]+ confirmed the inequivalent reactivity of the bridging atoms in axial and equatorial position as observed in previous studies. Collision-induced decomposition (CID) of [Mo3S7(dtc)3]+ ( 1 ), [Mo3S6(dtc)3]+ ( 2 ), [Mo3S(Sax–Seeq)3(dtc)3]+ ( 3 ), and [Mo3Se7(dtc)3]+ ( 4 ) revealed distinctly different fragmentation reactions for the SIMS and CID mode. CID of 1, 3 , and 4 resulted in a two-step reaction with the exclusive elimination of diatomic molecules XY (X,Y = S/Se). In the case of 3 , the selective elimination of Se2 indicated the abstraction of two Se-atoms located in equatorial positions of two different bridging groups. This result is discussed in terms of mechanisms, based on labile M? Xeq and inert M? Xax bonds with an intramolecular formation of a X4 fragment prior to the elimination of X2.  相似文献   

8.
Reactions of Cp2ZrCl2 with homometallic complexes of aluminium containing one residual hydroxy group Al(OGO)(OGOH) and Al(L)(OGOH) [where G=G1=CMe2CMe2 (1a); G=G2=CMe2CH2CHMe (1b); G= G3=CMe2CH2CH2CMe2 (1c) and L=L1=OC6H4CH=NCH2CH2O, G=G1 (2a); L=L1, G=G2 (2b); L=L1, G=G3 (2c); L=L2=OC10H6CH=NCH2CH2O, G=G1 (2d); L=L2, G=G2 (2e); L=L2, G=G3 (2f)] in THF using Et3N as HCl acceptor affords novel heterobimetallic compounds of the types Al(OGO)2Zr(Cl)Cp2 and Al(L)(OGO)Zr(Cl)Cp2, respectively. All of these derivatives have been characterised by elemental analyses, molecular weight measurements, and spectroscopic [IR, NMR (1H and 27Al)] studies.  相似文献   

9.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

10.
Three-membered ring (3MR) forming processes of X(SINGLE BOND)CH2(SINGLE BOND)CH2(SINGLE BOND)F and CH2(SINGLE BOND)C((SINGLE BOND)Y)(SINGLE BOND)CH2(SINGLE BOND)F (X(DOUBLE BOND)CH2, O, or S and Y(DOUBLE BOND)0 or S) through a gas phase neighboring group mechanism (SNi) are studied theoretically using the ab initio molecular orbital method with the 6–31+G* basis set. When electron correlation effects are considered, the activation (ΔG) and reaction energies (ΔG0) are lowered by ca. 10 kcal mol−1, indicating the importance of the electron correlation effect in these reactions. The contribution of entropy of activation (−TΔS) at 298 K to ΔG is very small, and the reactions are enthalpy controlled. The ΔG and ΔG0 values for these ring closure processes largely depend on the stabilities of the reactants and the heteroatom acting as a nucleophilic center. The Bell–Evans–Polanyi principle applies well to all these reaction series. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1773–1784, 1997  相似文献   

11.
The G values of poly(methyl methacrylates) (PMMA), polycarbonates, and a polylactone for γ-radiation were determined by using a computer-assisted GPC as the primary tool for the measurement of the number-average molecular weights M?n. The accuracy and precision of the automated GPC were found to have a normalized standard deviation (σ/M?n) of less than 7%. The G value of PMMA was determined to be essentially independent of molecular weight. For low molecular weight polymers, some nonlinearity in the I/M?n versus dosage plot was observed at low dosage, i.e., about 1 Mrad.  相似文献   

12.
Transition metal intermediates bearing M−X σ-bonds are ubiquitous in metal-mediated C−X bond transformations. Thermodynamic knowledge of M−X bond cleavage is crucial to explore relevant reactions; but little was accumulated till present due to lack of suitable determination methods. We here report the first systematic study of the Pd−X bond homolysis dissociation free energies [BDFE(Pd−X)] of representative [(tmeda)Pd(4-F−C6H4)X] (tmeda=N,N,N′,N′-tetramethylethylenediamine, X=OR or NHAr) in DMSO on the basis of reliable measurement of their bond heterolysis energies (ΔGhet(Pd−X)). Despite ΔGhet(Pd−O)s of palladium-phenoxides are generally found about 8 kcal/mol smaller than ΔGhet(Pd−N)s of palladium-amidos, their BDFE(Pd−X)s are observed comparable. The structure-property relationship was investigated to disclose an enhancement effect of electron-withdrawing groups on BDFE(Pd−X)s. Linear free energy relationship analysis revealed that Pd−X bonds are more sensitive than X−H bonds to structural variation. The energetic propensity of reductive elimination from arylpalladium complexes was evaluated by combinatorial use of BDFE(Pd−X)s and BDFE(C−X)s, indicating an overall thermodynamic bias to C−N bond formation.  相似文献   

13.
Computational investigations by an ab initio molecular orbital method (HF and MP2) with the 6‐311+G(d,p) and 6‐311++G(2df, 2pd) basis sets on the tautomerism of three monochalcogenosilanoic acids CH3Si(?O)XH (X = S, Se, and Te) in the gas phase and a polar and aprotic solution tetrahydrofuran (THF) was undertaken. Calculated results show that the silanol forms CH3Si(?X)OH are much more stable than the silanone forms CH3Si(?O)XH in the gas‐phase, which is different from the monochalcogenocarboxylic acids, where the keto forms CH3C(?O)XH are dominant. This situation may be attributed to the fact that the Si? O and O? H single bonds in the silanol forms are stronger than the Si? X and X? H single bonds in the silanone forms, respectively, even though the Si?X (X = S, Se, and Te) double bonds are much weaker than the Si?O double bond. These results indicate that the stability of the monochalcogenosilanoic acid tautomers is not determined by the double bond energies, contrary to the earlier explanation based on the incorrect assumption that the Si?S double bond is stronger than the S?O double bond for the tautomeric equilibrium of RSi(?O)SH (R?H, F, Cl, CH3, OH, NH2) to shift towards the thione forms [RSi(?S)OH]. The binding with CH3OCH3 enhances the preference of the silanol form in the tautomeric equilibrium, and meanwhile significantly lowers the tautomeric barriers by more than 34 kJ/mol in THF solution. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

14.
An extended geminal model has been applied to determine the interatomic potential for the X1Σ state of Be2. By adopting a (23s, 10p, 8d, 6f, 3g, 2h) uncontracted Gaussian‐type basis, the following spectroscopic parameters are obtained: Re = 4.633 a.u. (4.63 a.u.), De = 945 ± 15 cm (790 ± 30 cm), G(1)–G(0) = 221.7 cm?1 (223.8 ± 2 cm?1), G(2)–G(1) = 175.0 cm?1 (169 ± 3 cm?1), G(3)–G(2) = 123.1 cm?1 (122 ± 3 cm?1), and G(4)–G(3) = 80.8 cm?1 (79 ± 3 cm?1), experimental values in parentheses. The calculated binding energy is substantially higher than the accepted experimental value. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

15.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

16.
The geometries of molecules H_3AXAH_3(X=O,S,Se and A=C,Si)have been optimizedusing STO-3G ab initio calculations and gradient method and the results are in good agreement withreported experimental values.From the STO-3G optimized geometries,we have also calculated theelectronic structures of these molecules using 4-31G and 6-31G basis sets to obtain the MO energies.atomic net charges and dipole moments.The ionization potentials calculated by 6-31G basis set are ingood agreement with experimental values.  相似文献   

17.
The resonance character of Cu/Ag/Au bonding is investigated in B???M?X (M=Cu, Ag, Au; X=F, Cl, Br, CH3, CF3; B=CO, H2O, H2S, C2H2, C2H4) complexes. The natural bond orbital/natural resonance theory results strongly support the general resonance‐type three‐center/four‐electron (3c/4e) picture of Cu/Ag/Au bonding, B:M?X?B+?M:X?, which mainly arises from hyperconjugation interactions. On the basis of such resonance‐type bonding mechanisms, the ligand effects in the more strongly bound OC???M?X series are analyzed, and distinct competition between CO and the axial ligand X is observed. This competitive bonding picture directly explains why CO in OC???Au?CF3 can be readily replaced by a number of other ligands. Additionally, conservation of the bond order indicates that the idealized relationship bB???M+bMX=1 should be suitably generalized for intermolecular bonding, especially if there is additional partial multiple bonding at one end of the 3c/4e hyperbonded triad.  相似文献   

18.
Tetrapnictidotitanates(IV) M4TiX4 (M = Sr, Ba; X = P, As), hierarchical Derivatives of the KGe Structure K4□Ge4 The four new tetrapnictidotitanates(IV) Sr4TiP4, Sr4TiAs4, Ba4TiP4 and Ba4TiAs4 are synthesized from the binary pnictides MX (M = Sr, Ba and X = P, As) and elementary titanium in tantalum ampoules. The compounds are isotypic and isoelectronic with Ba4SiAs4 (space group P4 3n (no. 218); cP72; Z = 8; Sr4TiP4: a = 1259.0(1) pm; Sr4TiAs4: a = 1288.3(4) pm; Ba4TiP4: a = 1316.6(2) pm; Ba4TiAs4: a = 1346.9(2) pm). The transition metal compounds form cubic, metallic reflecting crystals (Sr4TiP4 (green); Sr4TiAs4 (silver coloured); Ba4TiP4 (silver coloured); Ba4TiAs4 (violet). They are semiconducting and very sensitive against air and moisture. The structure is a hierarchical derivative of Cr3Si (A15) and KGe type: Cr6Si2 ? (□Ge4K4)6(□Ge4K4)2 ? (TiX4M4)6(TiX4M4)2, where Ti occupies the positions of the Cr3Si structure, and the alkaline-earth metal and pnicogen atoms occupy the positions of the KGe structure. Therefore, Ti is surrounded by four X and four more distant M atoms forming a heterocubane. The mean bond lengths are: d (Ti? P) = 238.0(5) pm; 307 ? d(Sr? P) ? 333 pm; d (Ti? As) = 245.9(4); 313 ? d(Sr? As) ? 341 pm; d (Ti? P) = 240.5(5); 324 ? d(Ba? P) ? 348 pm; d (Ti? As) = 248.3(3) pm; 331 ? d(Ba? As) ? 355 pm.  相似文献   

19.
Energy differences, ΔX s−t (X = E, H, and G) (ΔX s−t = X(singlet) − X(triplet)) between singlet (s) and triplet (t) states of C12H8M were calculated at B3LYP/6-311+G*. The DFT calculations indicated that the ΔG s−t between singlet (s) and triplet (t) states of C12H8M were increased from M = C to M = Pb. The ΔG s−t of C12H8M was compared with its analogue C4H4M through replacement of heavy atoms from M = C to M = Pb. Configurations of the electrons in orbitals (σ2 or π2) for the singlet state of C12H8M were discussed.  相似文献   

20.
We investigated structures, vibrational frequencies, and rotational barriers of disilane (Si2H6), hexafluorodisilane (Si2F6), and hexamethyldisilane (Si2Me6) by using ab initio molecular orbital and density functional theories. We employed four different levels of theories (i.e., HF/6–31G*, MP2/6–31G*, BLYP/6–31G*, and B3LYP/6–31G*) to optimize the structures and to calculate the vibrational frequencies (except for Si2Me6 at MP2/6–31G*). MP2/6–31G* calculations reproduce experimental bond lengths well, while BLYP/6–31G* calculations largely overestimate some bond lengths. Vibrational frequencies from density functional theories (BLYP/6–31G* and B3LYP/6–31G*) were in reasonably good agreement with experimental values without employing additional correction factors. We calculated the ΔG(298 K) values of the internal rotation by correcting zero-point vibration energies, thermal vibration energies, and entropies. We performed CISD/6–31G*//MP2/6–31G* calculations and found the ΔG(298 K) values for the internal rotation of Si2H6, Si2F6, and Si2Me6 to be 1.36, 2.06, and 2.69 kcal/mol, respectively. The performance of this level was verified by using G2 and G2(MP2) methods in Si2H6. According to our theoretical results, the ΔG(298 K) values were marginally greater than the ΔE(0 K) values in Si2F6 and Si2Me6 due to the contribution of the entropy. In Si2H6 the ΔE(0 K) and ΔG(298 K) values were coincidently similar due to a cancellation of two opposing contributions between zero-point and thermal vibrational energies, and entropies. Our calculated ΔG(298 K) values were in good agreement with experimental values published recently. In addition, we also performed MM3 calculations on Si2H6 and Si2Me6. MM3 calculated rotational barriers and thermodynamic properties were compared with high level ab initio results. Based on this comparison, MM3 calculations reproduced high level ab initio results in rotational barriers and thermodynamic properties of Si2H6 derivatives including vibrational energies and entropies, although large errors exist in some vibrational frequencies. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1523–1533, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号