首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
The soliton perturbation theory is used to study the adiabatic parameter dynamics of solitons due to the generalized fifth-order KdV equation in presence of perturbation terms. The adiabatic change of soliton velocity is also obtained in this paper.  相似文献   

3.
In this paper, we further develop the local discontinuous Galerkin method to solve three classes of nonlinear wave equations formulated by the general KdV-Burgers type equations, the general fifth-order KdV type equations and the fully nonlinear K(n, n, n) equations, and prove their stability for these general classes of nonlinear equations. The schemes we present extend the previous work of Yan and Shu [30, 31] and of Levy, Shu and Yan [24] on local discontinuous Galerkin method solving partial differential equations with higher spatial derivatives. Numerical examples for nonlinear problems are shown to illustrate the accuracy and capability of the methods. The numerical experiments include stationary solitons, soliton interactions and oscillatory solitary wave solutions.The numerical experiments also include the compacton solutions of a generalized fifthorder KdV equation in which the highest order derivative term is nonlinear and the fully nonlinear K (n, n, n) equations.  相似文献   

4.
This paper obtains the 1-soliton solution of the complex KdV equation with power law nonlinearity. The solitary wave ansatz is used to carry out the integration. The soliton perturbation theory for this equation is developed and the soliton cooling is observed for bright solitons. Finally, the dark soliton solution is also obtained for this equation.  相似文献   

5.
An analytic study is conducted on a generalized fifth-order KdV equation. The tanh method and a sinh–cosh functions ansatz are used. A set of entirely new solitons and periodic solutions is established. The study introduces new ansatz to handle nonlinear PDEs in the solitary wave theory.  相似文献   

6.
With symbolic computation, under investigation in this paper is the perturbed Korteweg–de Vries equation for the nonlocal solitary waves and arrays of wave crests. Via the Hirota method, the bilinear form, Bäcklund transformation and superposition formulae are obtained. N-soliton solutions in terms of the Wronskian are constructed. Asymptotic analysis is used to analyze the collision dynamics, and figures are plotted to illustrate the influence of the perturbation. We find that the perturbation affects the propagation velocities of the solitons, but does not affect the amplitudes and widths of the solitons. Besides, the solitonic collisions turn out to be elastic.  相似文献   

7.
The one-dimensional Euler–Poisson system arises in the study of phenomena of plasma such as plasma solitons, plasma sheaths, and double layers. When the system is rescaled by the Gardner–Morikawa transformation, the rescaled system is known to be formally approximated by the Korteweg–de Vries (KdV) equation. In light of this, we show existence of solitary wave solutions of the Euler–Poisson system in the stretched moving frame given by the transformation, and prove that they converge to the solitary wave solution of the associated KdV equation as the small amplitude parameter tends to zero. Our results assert that the formal expansion for the rescaled system is mathematically valid in the presence of solitary waves and justify Sagdeev's formal approximation for the solitary wave solutions of the pressureless Euler–Poisson system. Our work extends to the isothermal case.  相似文献   

8.
We apply the variational approximation to study the dynamics of solitary waves of the nonlinear Schrödinger equation with compensative cubic‐quintic nonlinearity for asymmetric 2‐dimension setup. Such an approach allows to study the behavior of the solitons trapped in quasisymmetric potentials without an axial symmetry. Our analytical consideration allows finding the soliton profiles that are stable in a quasisymmetric geometry. We show that small perturbations of such states lead to generation of the oscillatory‐bounded solutions having 2 independent eigenfrequencies relating to the quintic nonlinear parameter. The behavior of solutions with large amplitudes is studied numerically. The resonant case when the frequency of the time variations (time managed) potential is near of the eigenfrequencies is studied too. In a resonant situation, the solitons acquire a weak time decay.  相似文献   

9.
This paper obtains the exact 1-soliton solution of the perturbed Korteweg-de Vries equation with power law nonlinearity. The topological soliton solutions are obtained. The solitary wave ansatz is used to carry out this integration. The domain restrictions are identified in the process and the parameter constraints are also obtained. It has been proved that topological solitons exist only when the KdV equation with power law nonlinearity reduces to simply KdV equation.  相似文献   

10.
In this paper, we establish new solitary wave solutions to the modified Kawahara equation by the sine-cosine method. Moreover, the periodic solutions and bell-shaped solitons solutions to the generalized fifth-order KdV equation are obtained. The tanh method is used to handle the double sine-Gordon equation and the double sinh-Gordon equation. Families of exact travelling wave solutions are formally derived. The rational triangle sine-cosine method is introduced and to be constructed complex solutions to the modified Degasperis-Procesi (DP) equation and the modified Camassa-Holm (CH) equation.  相似文献   

11.
The combined effects of both adiabatic dust charge variation and non-thermally (fast) distributed ions on dust acoustic solitary structures are studied in a magnetized dusty plasmas consisting of the negatively and variably charged hot dust fluid, Boltzmann distributed electrons and non-thermally distributed ions. By using the reductive perturbation method, we derive the Korteweg-de Vries (KdV) equation governing the dust acoustic solitary waves. It is shown that the dust charge variation and the presence of non-thermally distributed ions would modify the nature of dust acoustic solitary structures significantly and may excite both dust acoustic solitary holes (soliton with a density dip) and positive solitons (soliton with a density hump).  相似文献   

12.
The intra-channel collision of optical solitons, with non-Kerr law nonlinearities, is studied in this paper by the aid of quasi-particle theory. The perturbations terms that are considered in this paper are both of Hamiltonian as well as non-Hamiltonian type. The suppression of soliton–soliton interaction, in presence of these perturbation terms, is achieved. The nonlinearities that are studied in this paper are Kerr, power, parabolic and dual-power laws. The numerical simulations support the quasi-particle theory.  相似文献   

13.
14.
We present a method to prove nonlinear instability of solitary waves in dispersive models. Two examples are analyzed: we prove the nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a KP-I flow and the transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.  相似文献   

15.
An approach, which allows us to construct specific closed-form solitary wave solutions for the KdV-like water-wave models obtained through the Boussinesq perturbation expansion for the two-dimensional water wave problem in the limit of long wavelength/small amplitude waves, is developed. The models are relevant to the case of the bi-directional waves with the amplitude of the left-moving wave of O(ϵ) (ϵ is the amplitude parameter) as compared with that of the right-moving wave. We show that, in such a case, the Boussinesq system can be decomposed into a system of coupled equations for the right- and left-moving waves in which, to any order of the expansion, one of the equations is dependent only on the (main) right-wave elevation and takes the form of the high-order KdV equation with arbitrary coefficients whereas the second equation includes both elevations. Then the explicit solitary wave solutions constructed via our approach may be treated as the exact solutions of the infinite-order perturbed KdV equations for the right-moving wave with the properly specified high-order coefficients. Such solutions include, in a sense, contributions of all orders of the asymptotic expansion and therefore may be considered to a certain degree as modelling the solutions of the original water wave problem under proper initial conditions. Those solitary waves, although stemming from the KdV solitary waves, possess features found neither in the KdV solitons nor in the solutions of the first order perturbed KdV equations.  相似文献   

16.
17.
We investigate possible linear waves and nonlinear wave interactions in a bounded three‐layer fluid system using both analysis and numerical simulations. For sharp interfaces, we obtain analytic solutions for the admissible linear mode‐one parent/signature waves that exist in the system. For diffuse interfaces, we compute the overtaking interaction of nonlinear mode‐two solitary waves. Mathematically, owing to a small loss of energy to dispersive tails during the interaction, the waves are not solitons. However, this energy loss is extremely minute, and because the dispersively coupled waves in the system exhibit the three types of Lax KdV interactions, we conclude that for all intents and purposes the solitary waves exhibit soliton behavior.  相似文献   

18.
The defocusing Hirota equation has dark and gray soliton solutions which are stable on a background of periodic waves of constant amplitude. In this paper, gray solitary wave evolution for a higher-order defocusing Hirota equation is examined. A direct analysis is used to identify families of higher-order gray Hirota solitary waves, which are embedded for certain parameter values. Soliton perturbation theory is used to determine the detailed behavior of an evolving higher-order gray Hirota solitary wave. An integral expression for the first-order correction to the wave is found and analytical expressions for the steady-state and transient components of the solitary wave tail are derived. A subtle and complex picture of the development of solitary wave tails emerges. It is found that solitary wave tails develop for two reasons, one is decay of the solitary wave caused by resonance, the second is corrections at first-order to the background wave. Strong agreement is found between the theoretical predictions of the perturbation theory and numerical solutions of the governing equations.  相似文献   

19.
This paper presents specific features of solitary wave dynamics within the framework of the Ostrovsky equation with variable coefficients in relation to surface and internal waves in a rotating ocean with a variable bottom topography. For solitary waves moving toward the beach, the terminal decay caused by the rotation effect can be suppressed by the shoaling effect. Two basic examples of a bottom profile are analyzed in detail and supported by direct numerical modeling. One of them is a constant‐slope bottom and the other is a specific bottom profile providing a constant amplitude solitary wave. Estimates with real oceanic parameters show that the predicted effects of stable soliton dynamics in a coastal zone can occur, in particular, for internal waves.  相似文献   

20.
We consider a generalized Fitzhugh–Nagumo equation exhibiting time-varying coefficients and linear dispersion term. By means of specific solitary wave ansatz and the tanh method, a new variety of soliton solutions are derived. The physical parameters in the soliton solutions are obtained as function of the time-dependent model coefficients. The conditions of existence and uniqueness of solitons are presented. These solutions may be useful to explain the nonlinear dynamics of waves in an inhomogeneous media that is described by the variable coefficients Fitzhugh–Nagumo equation. Clearly, adaptive methods are straightforward and concise and their applications for the Fitzhugh–Nagumo equation with t-dependent coefficients enable one to construct soliton-like solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号