首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study a coupled system of equations on oriented compact 4-manifolds which we call the Bach–Merkulov equations. These equations can be thought of as the conformally invariant version of the classical Einstein–Maxwell equations. Inspired by the work of C. LeBrun on Einstein–Maxwell equations on compact Kähler surfaces, we give a variational characterization of solutions to Bach–Merkulov equations as critical points of the Weyl functional. We also show that extremal Kähler metrics are solutions to these equations, although, contrary to the Einstein–Maxwell analogue, they are not necessarily minimizers of the Weyl functional. We illustrate this phenomenon by studying the Calabi action on Hirzebruch surfaces.  相似文献   

2.
We consider the Boltzmann equations for mixtures of Maxwell gases. It is shown that in certain limiting case the equations admit self-similar solutions that can be constructed in explicit form. More precisely, the solutions have simple explicit integral representations. The most interesting solutions have finite energy and power like tails. This shows that power like tails can appear not just for granular particles (Maxwell models are far from reality in this case), but also in the system of particles interacting in accordance with laws of classical mechanics. In addition, non-existence of positive self-similar solutions with finite moments of any order is proven for a wide class of Maxwell models.  相似文献   

3.
We find new classes of exact solutions to the Einstein–Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein–Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.  相似文献   

4.
We study the relationship between Maxwell and Dirac equations for a class of solutions of Maxwell equations that can represent purely electromagnetic particles.  相似文献   

5.
It is shown that the Dirac equation can be written in a form similar to Maxwell equations, where the Maxwell tensor is written as a bilinear expression of the Dirac field and the current is a simple function of the external potential and the Dirac field. Similarly, the Maxwell equations can be written as a self-coupled Dirac equation where the potential is a simple function of the Dirac field itself. It is illustrated by examples how the new formalism helps to find solutions of the coupled field equations.  相似文献   

6.
We provide new exact solutions to the Einstein–Maxwell system of equations which are physically reasonable. The spacetime is static and spherically symmetric with a charged matter distribution. We utilise an equation of state which is quadratic relating the radial pressure to the energy density. Earlier models, with linear and quadratic equations of state, are shown to be contained in our general class of solutions. The new solutions to the Einstein–Maxwell are found in terms of elementary functions. A physical analysis of the matter and electromagnetic variables indicates that the model is well behaved and regular. In particular there is no singularity in the proper charge density at the stellar centre unlike earlier anisotropic models in the presence of the electromagnetic field.  相似文献   

7.
Solutions which seem as the dual solutions to the original solution of the Maxwell equations for chiral nihility medium are listed. Using operators composed of fractional curl, solutions to the Maxwell equations which may be regarded as intermediate step between the original solution and dual to the original solution are determined. Dual solutions which are not valid have been pointed out.  相似文献   

8.
Source-free Maxwell equations are equivalent to the scalar wave equation. Most of its solutions are singular at infinity. If the nail eigenvector of the background metric is an eigenvector of the Maxwell field, too, the e.m. field is not changed by the plane wave.  相似文献   

9.
Application of the 5-dimensional coordinate transformations in the 5-dimensional theory lead us to some new solutions for the 4-dimensional Einstein–Maxwell equations and the relevant scaler equation. From the Kerr solution we derive the corresponding solution. And we propose a new method to solve the usual 4-dimensional Einstein–Maxwell equations and the scalar equation, illustrating by three examples.  相似文献   

10.
We consider asymptotically-flat, static and stationary solutions of the Einstein equations representing Einstein–Maxwell space–times in which the Maxwell field is not constant along the Killing vector defining stationarity, so that the symmetry of the space-time is not inherited by the electromagnetic field. We find that static degenerate black hole solutions are not possible and, subject to stronger assumptions, nor are static, non-degenerate or stationary black holes. We describe the possibilities if the stronger assumptions are relaxed.  相似文献   

11.
In this paper, we present a formalism to generate a family of interior solutions to the Einstein–Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner–Nordström space–time. By reducing the Einstein–Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.  相似文献   

12.
It is shown that starting from a solution of the Einstein–Maxwell equations coupled to a scalar field given by the Kaluza–Klein theory, invariant under a one-parameter group, one can obtain a one-parameter family of solutions of the same equations.  相似文献   

13.
Following the technique of Müller zum Hagen (Proc. Camb. Phil. Soc. 67: 415–421, 1970) we show that strictly static and strictly stationary solutions of the Einstein–Maxwell equations are analytic in harmonic coordinates. This holds whether or not the Maxwell field inherits the symmetry.  相似文献   

14.
We consider d-dimensional solutions to the electrovacuum Einstein–Maxwell equations with the Weyl tensor of type N and a null Maxwell \((p+1)\)-form field. We prove that such spacetimes are necessarily aligned, i.e. the Weyl tensor of the corresponding spacetime and the electromagnetic field share the same aligned null direction (AND). Moreover, this AND is geodetic, shear-free, non-expanding and non-twisting and hence Einstein–Maxwell equations imply that Weyl type N spacetimes with a null Maxwell \((p+1)\)-form field belong to the Kundt class. Moreover, these Kundt spacetimes are necessarily \({ CSI}\) and the \((p+1)\)-form is \({ VSI}\). Finally, a general coordinate form of solutions and a reduction of the field equations are discussed.  相似文献   

15.
《Physics letters. A》2001,291(6):367-370
We exhibit exact finite energy superluminal solutions of Maxwell equations in vacuum and discuss the physical meaning of these solutions.  相似文献   

16.
We construct new charged solutions of the Einstein–Maxwell field equations with cosmological constant. These solutions describe the nut-charged generalisation of the higher-dimensional Reissner–Nordström spacetimes. For a negative cosmological constant these solutions are the charged generalizations of the topological nut-charged black hole solutions in higher dimensions. Finally, we discuss the global structure of such solutions and possible applications.  相似文献   

17.
声诱导电磁场的赫兹矢量表示与多极声电测井模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
关威  胡恒山  储昭坦 《物理学报》2006,55(1):267-274
在假设声场不受电磁场影响的前提下,将Pride声电耦合方程组化为具有电流源的麦克斯韦方程组.与空间位置固定的电流源产生的电磁场不同,孔隙地层中声波诱导的电磁场是由空间波动的电流源产生的.通过引入赫兹矢量,将求解麦克斯韦方程组问题转化为求解关于赫兹矢量的非齐次矢量赫姆霍兹方程组.通过求解该方程组,得出电磁场表达式.利用此方法,针对声电效应测井,分别计算了由单极声源、偶极声源、四极声源激发的井内声场及其诱导电磁场的全波波形. 关键词: 孔隙介质 诱导电磁场 测井 多极声源  相似文献   

18.
In this Letter, the Maxwell field theory is considered on a closed and orientable Riemann surface of genus h 1. The solutions of the Maxwell equations corresponding to nontrivial values of the first Chern class are explicitly constructed for any metric in terms of the prime form.  相似文献   

19.
S HANSRAJ  S D MAHARAJ  T MTHETHWA 《Pramana》2013,81(4):557-567
The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special functions. Several classes of exact solutions are identified which may be considered as charged generalizations of the incompressible Schwarzschild interior model. An analysis of the physical features is undertaken for the uniform case. It is demonstrated that uniform density spheres with constant electric field intensity are not realizable with isotropic pressures. This highlights the necessity of studying the criteria for physical admissability of gravitating spheres in general relativity which are solutions to the Einstein–Maxwell equations.  相似文献   

20.
本文由电磁波的麦克斯韦方程组出发,介绍导出折射定律和反射定律的一种证明方法.其证明方法,使用了空间微元近似,然后推广至全空间传播的方法,从而简化了麦克斯韦方程组求解的烦琐过程,提出了一种可教学推广的实用性方法.通过使用微元法,求解得到麦克斯韦方程的行波解形式,即得出电磁场是一种行波.由电磁场的向量形式推导空间中电磁波的折射、反射定律,得到折射、反射定律的证明并不需要电磁波的解析形式,在连续函数的情形下是普遍成立的.求解过程中加深对麦克斯韦方程组的理解,体现了电磁过程的深刻物理图像,也为由几何光学向波动光学过渡提供一种思想上的指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号