首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incoherent inelastic neutron scattering spectra of hexamethylene tetramine (HMT) and adamantane have been measured at high resolution between 200 and 1000 cm-1. The agreement between the frequencies of the observed spectra and the optical spectra of Mecke and Spieseche (HMT) and Bailey (adamantane) is good. The observed neutron spectra are also matched very closely by the calculated one-phonon spectra, computed from a normal-coordinate analysis. There is some additional structure in the neutron spectra which appears to be due to multiphonon scattering involving lattice modes.  相似文献   

2.
The vibrationally assisted electronic (vibronic) transitions of localized centers in crystalline solids provide relevant information regarding the phonon spectra of the host materials. We present the vibronic spectra of some compounds with particular attention to the case of the transition metal ions V2+ and Cr3+ embedded in simple ionic crystals such as MgO or more complex systems such as YAG. The vibronic spectra are interpreted in light of the radiative selection rules and are compared with phonon data obtained with other techniques such as neutron scattering, infrared and Raman spectroscopies. Conclusions regarding the effectiveness of vibronic spectra in uncovering the phonon spectral distributions are presented.  相似文献   

3.
We present inelastic neutron scattering measurements of the low energy and strongly damped phonons in the high temperature bcc phase of zirconium. These phonons were investigated at different scattering vectors but equivalent phonon wave vectors in different Brillouin zones or along different but equivalent paths in the same Brillouin zone. Neither the observed differences in intensity nor in line shapes can be explained by the coherent one-phonon scattering law . This leads to an apparent violation of the fundamental symmetry of lattice dynamics. Taking into account the strong anharmonicity of these phonons, interferences between one- and multi-phonon scattering are held responsible for these effects. Measurements in different scattering planes reveal that due to the symmetry of the bcc lattice, these effects can only be observed in certain directions. Received: 24 December 1997 / Received in final form: 9 March 1998 / Accepted: 19 March 1998  相似文献   

4.
张安民  张清明 《物理》2011,40(02):71-78
周期结构的晶格振动和分子的振动或转动谱,可以看作材料的特征指纹,拉曼散射正是探测这些振动的非常灵敏和有效的技术,因此它已经被广泛地应用到基础研究和工业生产的各个方面.而原则上,通过固体中的自由载流子或自旋与光的非弹性散射过程,人们也可以获得关于电子和磁激发的重要信息.文章对电子和磁的拉曼散射基本概念作了简要介绍,并对一些关联电子体系中的拉曼实验作了简要综述.特别是在非常规超导中,拉曼散射在确定超导能隙的大小和各向异性以及配对对称性等方面发挥了独特的作用.  相似文献   

5.
The electronic bands of some foreign ions in a crystal exhibit one or a few intermixed sequences of equidistant lines (vibronic spectra.) Examples are the divalent rare-earth ions in alkali-halide and alkaline-earth-halide crystals. It is shown that such sequences of lines are only possible if a) the disturbed lattice dynamics gives rise to localized or quasi-localized modes and b) the electronic functions of the defect ion (properly symmetrized in the static crystal field) do not overlap the nearest lattice ions. To calculate the single lines of a vibronic band a refined method of moments is developed. Its parameters (oscillator displacement and frequency change) follow from the dynamics of the disturbed lattice. The lattice vibrations are calculated by means of modern scattering theory. To describe the scattering resonance the advantageous concept of metastable (quasi-localized) vibrations is introduced. Then the projection of the cartesian coupling functions of first and second order onto the disturbed lattice eigenvectors can be determined. Their matrix elements <n|U x |n> and <n|U xx |n> define the change of the equilibrium positions and frequencies during the transition. Further on general symmetry-selection rules are derived for the electron-lattice coupling. Finally the important case of a pure electrostatic coupling is discussed in more detail. It is evident that the study of vibronic spectra gives important information about the dynamics of the disturbed lattice and the electron-lattice coupling. Especially they constitute a method to investigate localized and quasi-localized modes, even if their dipole moment is too small for direct optical excitation, or if their frequency lies in the absorbing region of the crystal.  相似文献   

6.
We have measured electronic Raman scattering spectra and infrared absorption spectra of arsenic doped ZnTe. Electronic transitions from the ground state to the excited states in the arsenic acceptor and also vibronic transitions accompanying 1 LO phonon have been observed in both spectra. Experimentally determined acceptor levels are compared with the theoretical calculation.  相似文献   

7.
In the present paper, we discuss the molecular information that can be derived from surface‐enhanced resonance Raman Scattering (SERRS) experiments performed with different excitation wavenumbers, which are close to resonance with an excited electronic state of the molecule [surface‐enhanced Raman dispersion spectroscopy (SERADIS)]. We specifically consider the situation, where a molecule is physisorbed to a site characterized by a local electric field with a direction independent of the direction of the external, exciting field. The molecular information available in this experimental situation is compared with the information available in a corresponding Raman dispersion spectroscopy (RADIS) experiment performed on a free molecule or a molecule physisorbed to a site, where the local field is isotropic. The consequences for resonance Raman scattering (RRS) and RADIS, when the molecule is adsorbed in the highly anisotropic hot spot (HS), are discussed; here it is shown that only the molecular information originating from the symmetric part of the scattering tensor can survive in SERRS and in SERADIS. Besides, it is shown that the depolarization ratio can no longer be used to discriminate between totally and non‐totally symmetric modes in the polarized surface‐enhanced Raman scattering (SERS) spectra. These results have implications for the resonance Raman spectra, but even more important for the application of the resonance Raman effect in the investigation of excited vibronic molecular states, in general, and in the investigation of electronic states in larger bio‐molecules, such as the various metallo‐porphyrins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A general approach and results of specific calculations of conjugated vibronic absorption and fluorescence spectra of “soft” molecules subjected to conformational transitions are presented. The vibronic spectra of these molecules exhibit significant anomalies such as a large energy gap between the fluorescence and absorption spectra, a strong deviation from the mirror symmetry, etc., which cannot be explained within the framework of the theory of vibronic spectra based on single-well adiabatic potentials.  相似文献   

9.
The effect of the kinematic factor on vibronic spectra of europium compounds and Eu3+-doped lanthanide compounds was examined experimentally. It was demonstrated that isotopic or quasi-isotopic substitution of the ions of the crystal lattice gives rise not only to the changes of the vibration frequencies but also to alteration of the value of electron-phonon interaction. The latter displays in changing the relative integral intensity of vibronic sidebands of electronic transitions of Eu3+ ion. Eu3+ vibronic spectra of a number of pairs of natural and isotopically or quasi-isotopically substituted compounds: nitrates, halides, formates, acetates, oxalates, β-diketonates, etc., were studied. In most cases the substitution of deuterium for hydrogen was applied. Decrease of the electron-phonon interaction with the increase of the isotopic mass depends on different structural characteristics. It was found that a factor of decreasing the relative intensity of the vibronic sideband of electronic transition of Eu3+ ion lies within the range ∼1.2 and ∼7 for pairs of compounds under investigation. The largest change of the intensity of vibronic sidebands was observed in a pair of formates Eu(HCOO)3 and Eu(DCOO)3 having the tridentate-bridging coordination of the formate anions and a three-dimensional frame structure. One should take into consideration both decreasing the vibration frequencies and diminishing the value of electron-phonon interaction at introduction of heavy isotope or quasi-isotope in the crystal lattice of lanthanide compounds to reduce the multiphonon quenching of luminescence.  相似文献   

10.
Neutron scattering is used to study the structure and dynamics of Me1 − x (NH4) x SCN (Me = K, Rb) mixed crystals along the concentration section of 0.0 < x < 1.0 at room temperature 10 and 290 K. Phase transitions in Me1 − x (NH4) x SCN mixed crystals are analyzed by neutron powder diffraction. The measured spectra of inelastic incoherent neutron scattering from mixed crystals in a concentration range of 0.0 < x < 1.0 at 10 are transformed into the generalized phonon density of states G(E) in the one-phonon incoherent approximation. Using G(E), we determine the changes in ammonium ion dynamics during phase transitions. Low energy resonance and local translational (two bands) and librational (two bands) modes are observed in the disordered rhombic phase at 10 K. The low energy resonance mode is not found in the ordered monoclinic phase at 10 K, though the local translational mode in the form of two bands and the local librational mode in the form of four bands are present there. The low energy resonance mode appears due to hybridization of the phonon spectrum of the host crystal with rotational tunneling modes of the split librational ground state of the impurity’s molecular ammonium ion.  相似文献   

11.
The fluorescence and fluorescence excitation spectra of azocompound, 2,3-diazabicyclo[2.2.2]oct-2-ene, have been studied using jet cooling. The violation of the mirror symmetry between the fluorescence and fluorescence excitation spectra due to an intense long-wavelength emission that manifests itself in solutions and in the gas phase cannot be eliminated even by jet cooling. It has been revealed that the bands of pure electronic and vibronic transitions are split by 0.55 cm?1, which is caused by tunneling with accompanying emission from an intermediate short-lived state and which may be the reason for the violation of the mirror symmetry of the spectra upon tunnel inversion.  相似文献   

12.
R. Loudon 《物理学进展》2013,62(7):813-864
A review is given of progress in the theoretical and experimental study of the Raman effect in crystals during the past ten years. Attention is given to the theory of those properties of long-wavelength lattice vibrations in both cubic and uniaxial crystals which can be studied by Raman scattering. In particular the phenomena observed in the Raman scattering from crystals which lack a centre of inversion are related to the theory. The angular variations of the scattering by any type of lattice vibration in a crystal having any symmetry can be easily calculated using a complete tabulation of the Raman tensor. Recent measurements of first-order lattice vibration spectra are listed. A discussion of Brillouin scattering is included. The relation of second-order Raman spectra to critical points in the lattice vibration density of states is discussed, and measurements of the second-order spectra of diamond and the alkali halides are reviewed. The theory and experimental results for Raman scattering by electronic levels of ions in crystals are examined, and proposals for Raman scattering by spin waves, electronic excitations across the superconductive gap and by plasmons are collected together. Finally, the prospects for applying lasers as sources for Raman spectroscopy are discussed, and progress in the new technique of stimulated Raman scattering is reviewed.  相似文献   

13.
The fluorescence excitation spectra of jet-cooled carbazole molecules at vibrational temperatures of 55 and 80 K and the fluorescence spectrum of these molecules excited by radiation at the frequency of a pure electronic transition are measured. As the vibrational temperature increases, the excitation spectra exhibit a series of lines of the same symmetry, which are caused by the interaction of the active vibration with a subensemble of optically inactive vibrations. The final symmetry of the totally and nontotally symmetric vibrations is determined from the shape of the rotational contours of the lines of vibronic transitions. The values of a decrease in the frequency of the nontotally symmetric vibrations in the first excited electronic state S 1 due to their interaction with the electronic state S 2 are calculated to be up to 100 cm?1. The frequencies of the pure electronic transitions in the absorption and fluorescence spectra coincide with each other and are equal to 30809 cm?1, the frequencies of vibrations in the ground state S 0 exceeding the frequencies of the corresponding vibrations in the excited state S 1. The degree of polarization of the integral fluorescence is determined for a series of vibronic transitions of the a 1 and b 2 final symmetry that are observed in the fluorescence excitation spectra, and the contribution of the intensity with the borrowed polarization θ to the integral fluorescence is calculated. It is found that the intensity θ is higher for the transitions of the b 2 symmetry and can reach ≈50%.  相似文献   

14.
The radiative decay of an exciton bound to a substitutional iodine ion in AgBr is investigated theoretically. The vibronic spectrum showing multiphonon replicas is calculated under the assumptions of linear electron-phonon coupling. The experimental intensity of the one-phonon spectrum as a function of frequency could satisfactorily be reproduced only by considering coupling coefficients up to fifth neighbors. This result indicates that the bound exciton influences the dynamics of the lattice over an extended neighborhood of the iodine.  相似文献   

15.
The visible and near infrared luminescence spectra of MoCl6 3- in Cs2NaMCl6 (M=Sc, Y, In) and MoBr6 3- in Cs2NaYBr6 have been measured between 15 000 cm-1 and 3000 cm-1 at liquid helium temperatures. Comparison with new electronic absorption, infrared and Raman spectra have enabled five luminescence transitions between the states derived from the t 2g 3 configuration to be assigned unambiguously. Each electronic transition shows extensive vibronic structure which can be analysed to yield the vibrational frequencies of the MoX 6 3- ion in each state. The spectra are strongly influenced by resonant interactions between the MoX 6 3- ion and the internal and lattice modes of the host lattices and there is an enormous variation in the intensities of the vibronic origins.  相似文献   

16.
Raman scattering spectra of RbMnCl3 are measured at room temperature under high hydrostatic pressure. The results are interpreted based on first principles lattice dynamics calculations. The experimental data obtained correlate with the calculations in the low frequency domain but disagree slightly in the region of high-frequency vibrations. The transition from the hexagonal to the cubic perovskite phase observed earlier (near 0.7 GPa) was confirmed, and new transitions to lower symmetry distorted phases were discovered (at 1.1 and 5 GPa).  相似文献   

17.
R. Loudon 《物理学进展》2013,62(52):423-482
A review is given of progress in the theoretical and experimental study of the Raman effect in crystals during the past ten years. Attention is given to the theory of those properties of long-wavelength lattice vibrations in both cubic and uniaxial crystals which can be studied by Raman scattering. In particular the phenomena observed in the Raman scattering from crystals which lack a centre of inversion are related to the theory. The angular variations of the scattering by any type of lattice vibration in a crystal having any symmetry can be easily calculated using a complete tabulation of the Raman tensor. Recent measurements of first-order lattice vibration spectra are listed. A discussion of Brillouin scattering is included. The relation of second-order Raman spectra to critical points in the lattice vibration density of states is discussed, and measurements of the second-order spectra of diamond and the alkali halides are reviewed.

The theory and experimental results for Raman scattering by electronic levels of ions in crystals are examined, and proposals for Raman scattering by spin waves, electronic excitations across the superconductive gap and by plasmons are collected together.

Finally, the prospects for applying lasers as sources for Raman spectroscopy are discussed, and progress in the new technique of stimulated Raman scattering is reviewed.  相似文献   

18.
19.
H. Kono  A.R. Ziv  S.H. Lin 《Surface science》1983,134(3):614-638
The band shape of electronic spectra for a diatomic molecule adsorbed on a surface is studied using the adiabatic approximation. In this approximation, the Schrödinger equation for the total system is separated into those for electronic motion, intramolecular vibration, and low frequency motions (e.g., hindered molecular rotation and lattice vibration). Our theory is applied to the system of an admolecule on the (001) surface of fcc monatomic crystals. We determine the line shape of a vibronic transition for both chemisorption and physisorption cases. In chemisorption cases, a side band due to the low frequency motions can appear in the line shape of a vibronic transition. On the other hand, in physisorption cases, the line shape is a single peak. Moreover, we suggest theoretically a new experimental technique for exciting adsorbed molecules; for this purpose, we derive equations giving the cross sections for the electronic excitation of admolecules by using ion impact at grazing incidence. The admolecules can be excited by this method; the subsequent light emission can give information on the orientation of the admolecule on the surface and on the admolecule-surface species interaction.  相似文献   

20.
The theory of multiphonon vibronic coupling to electronic transitions is applied in analysing fluorescence spectra of Eu2+ in BaFCI, which consist of the 4f7(6P7/2,) → 4f7(8S7/2) and 4f65d → 4f7 transitions, and the 4f7-4f65d excitation spectrum of Ce3+ in YPO4. The 4f electrons are weakly coupled to lattice vibration modes so that only weak one- and two-phonon sidebands are observable in the 4f-4f optical transitions, whereas the electron-phonon coupling is significantly stronger for a 5d electron. Accordingly, intensive multiphonon vibronic transitions overwhelmingly dominate the 4f65d → 4f7 spectrum. It is shown that the extended Judd-Ofelt theory for weak vibronic coupling in the framework of the M-process is equivalent to the Huang-Rhys theory for the δ-process. In the analysis of experimental data, contributions from local ligand modes and lattice acoustic modes are separated, and the coupling strength is evaluated, in terms of the Huang-Rhys parameter S, for the 4f-4f and 5d-4f vibronic transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号