首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The local softness of MgO, CaO, SrO, and BaO (100) surfaces has been studied using a model based on the local density of states. In all the species, the local softness (chemical reactivity) of oxygen atoms at the surface is enhanced as compared to the bulk. The results for the local and the global softness are in agreement with the ionic pattern of the metal-oxygen bond of the series.  相似文献   

2.
The effect of replacing SrO by BaO on the glass transition temperature and on devitrification behaviour in a series of glasses in the strontium tetragermanate — barium tetragermanate composition range has been studied by differential thermal analysis, X-ray diffraction and Fourier-transform infrared spectra. All glasses studied exhibit internal crystal nucleation. The progressive replacing of SrO by BaO causes the decrease of the glass transition temperature. Solid solutions between SrGe4O9 and BaGe4O9 were found to crystallize in glass containing both SrO and BaO. The effect of the specific surface of the glass samples on devitrification processes has been also pointed out.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Mechanisms for O2 dissociation over the BaO (100) surface   总被引:1,自引:0,他引:1  
We have investigated the atomic and molecular oxygen adsorptions on the various sites of the BaO (100) surface with both cluster models and the periodic slab models. We found that the atomic oxygen prefers to adsorb on the surface O2- to form the closed-shell peroxides with the binding energies of 83-88 kcal/mol. Such a high exothermicity provides a large driving force for the dissociation of molecular O2 on the BaO surfaces. As molecular oxygen approaches the BaO surfaces, the triplet ground state O2 molecule first binds electrostatically on top of the surface Ba2+ site. It further quenches to the singlet potential energy surface to form a covalently bonded O3(2-) species. We proposed a plausible pathway in which the O3(2-) species acts as the key precursor for further dissociation, leading eventually to the formation of surface peroxides O2(2-). This mechanism is helpful for the understanding of a series of related catalytic processes such as the oxidative coupling of methane, the NOx storage reduction, etc.  相似文献   

4.
通过在谱仪真空中对碱土金属氧化物作原位加热, 使其表面碳酸盐分解, 然后记录其晶格氧的O_(1s)电子结合能. 结果表明测得的MgO, CaO, SrO和BaO 的O_(1s)结合能明显地低于大部分文献报导的数值. 本文测得的碱土金属氧化物的O_(1s)电子结合能与氧原子上的Sanderson电荷分数有合理的相关性. 本文测得的BaO_2的O_(1s)结合能是530.9 eV, 它比文献报导的数值要低.  相似文献   

5.
6.
7.
Molecular dynamics simulations on the Kremer-Grest bead-spring model of polymer melts are used to study the effect of spherical nanoparticles on chain diffusion. We find that chain diffusivity is enhanced relative to its bulk value when polymer-particle interactions are repulsive and is reduced when polymer-particle interactions are strongly attractive. In both cases chain diffusivity assumes its bulk value when the chain center of mass is about one radius of gyration R(g) away from the particle surface. This behavior echoes the behavior of polymer melts confined between two flat surfaces, except in the limit of severe confinement where the surface influence on polymer mobility is more pronounced for flat surfaces. A particularly interesting fact is that, even though chain motion is strongly speeded up in the presence of repulsive boundaries, this effect can be reversed by pinning one isolated monomer onto the surface. This result strongly stresses the importance of properly specifying boundary conditions when the near surface dynamics of chains are studied.  相似文献   

8.
The use of an (18)O/(16)O exchange experiment as a means for probing surface space-charge layers in oxides is examined theoretically and experimentally. On the basis of a theoretical treatment, isotope penetration profiles are calculated for (18)O/(16)O exchange across a gas-solid interface and subsequent diffusion of the labelled isotope through an equilibrium space-charge layer depleted of mobile oxygen vacancies and into a homogeneous bulk phase. Profiles calculated for a range of conditions all have a characteristic shape: a sharp drop in isotope fraction close to the surface followed by a normal bulk diffusion profile. Experimental (18)O profiles in an exchanged (001) oriented single crystal of Fe-doped SrTiO(3) were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS). By extracting the space-charge potential from such profiles, we demonstrate that this method allows the spatially resolved characterization of space-charge layers at the surfaces of crystalline oxides under thermodynamically well-defined conditions.  相似文献   

9.
Electrokinetic methods are efficient in probing the electrostatic surface properties of charged systems. However, anomalies observed in experiments indicate that the classical electrokinetic theory should be reconsidered. Using Green's function methods and hydrodynamic simulations, we investigate electro-osmosis driven by electric-field-induced ion motion near a charged planar substrate with smooth or rough boundary. First, a reformulation of electro-osmotic theory for planar charged surfaces employing Green's functions shows that the Helmholtz-Smoluchowski (HS) relation between electrostatic potential and solvent velocity is exact for smooth surfaces, even in the presence of ion correlations. Deviations from HS theory are caused by combined hydrodynamic and electric surface friction, as our hydrodynamic simulations of ions at smooth and corrugated charged surfaces in lateral electric fields demonstrate. Within the simulations, hydrodynamic interactions are treated in the continuum limit and the presence of a no-slip boundary condition at the surface is taken into account. While electrofriction is relevant in highly charged system and/or for multivalent ions, hydrodynamic friction is dominant in systems with moderate surface charge density and/or low ionic valency. We also derive the effective electrokinetic surface charge from the electro-osmotic solvent profiles, which is substantially reduced when compared with the bare value and shows qualitative agreement with the experimental tendency.  相似文献   

10.
1‐n‐Butyl‐2,3‐dimethylimidazolium (BMMI) ionic liquids (ILs) associated with different anions undergo H/D exchange preferentially at 2‐Me group of the imidazolium in deuterated solvents. This process is mainly related to the existence of ion pairs rather than the anion basicity. The H/D exchange occurs in solvents (CDCl3 and MeCN for instance) in which intimate contact ion pairs are present and the anion possesses a labile H in its structure, such as hydrogen carbonate and prolinate. In D2O, separated ion pairs are formed and the H/D exchange does not occur. A plausible catalytic cycle is that the IL behaves as a neutral base in the course of all H/D exchange processes. NMR experiments, density functional calculations, and molecular dynamics simulations corroborate these hypotheses.  相似文献   

11.
The present work studies the role of ionic size in the interactions between the electrical double layers of colloids immersed into electrolyte solutions of monovalent ions. Such interactions are studied by means of Monte Carlo (MC) simulations and the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Despite the omission of the steric effects and some other features of real electrolyte solutions, DLVO theory is known to work qualitatively well for 1:1 electrolyte solutions. However, this affirmation is based on previous tests where an ionic diameter around 0.4 nm was taken for all ionic species. In contrast, some experimental studies suggest that larger hydrated ions should be considered and even specified for each type of ion. In this work, the importance of ionic size is analyzed by applying the primitive model of electrolyte to the intermediate region between a pair of equally charged infinite planar surfaces. The double layer interactions were calculated from the ionic densities at the distance of closest approach to the charged surfaces, this method constitutes an alternative to the traditional calculations at the midplane. Our MC simulations predict the existence of negative net pressures for monovalent electrolytes in the case of zero charge density. In addition, MC simulations reveal some disagreements with theoretical predictions for ionic diameters larger than 0.4 nm. These discrepancies can become significant if surface charge density is large enough due to the restructuration of the double layer. The physical mechanisms for these deviations are also discussed.  相似文献   

12.
A combined molecular dynamics (MD)+quantum mechanics (QM) method for studying processes on ionic surfaces is presented. Through the combination of classical MD and ab initio embedded-cluster calculations, this method allows the modeling of surface processes involving both the structural and dynamic features of the substrate, even for large-scale systems. The embedding approach used to link the information from the MD simulation to the cluster calculation is presented, and rigorous tests have been carried out to ensure the feasibility of the method. The electrostatic potential and electron density resulting from our embedded-cluster model have been compared with periodic slab results, and confirm the satisfying quality of our embedding scheme as well as the importance of applying embedding in our combined MD+QM approach. We show that a highly accurate representation of the Madelung potential becomes a prerequisite when the embedded-cluster approach is applied to temperature-distorted surface snapshots from the MD simulation.  相似文献   

13.
To calculate the electrostatic interaction between a charged sphere and a charged surface under the condition of constant charge density on the two surfaces is difficult. The theory presented in this paper provides an approximate solution to this problem when the charge of the two bodies is of opposite sign. The proposed calculation model is based on a solution of the Poisson–Boltzmann (P–B) equation for two oppositely charged planar surfaces to which the approximate integration procedure developed by Deryaguin is applied. The obtained expression is rather simple and is in good agreement with retention data for a protein in ion exchange chromatography. The developed model is physically more sound than the previously developed ‘slab’ model for protein retention. Under the experimental conditions of ion exchange chromatography of proteins, the two models give comparable numerical values for the ionic strength dependence of retention.  相似文献   

14.
Molecular dynamics simulations of electron and ion transfer reactions near a smooth surface are presented, analyzing the effect of the geometrical constraint of the surface and the interfacial electric field on the relevant solvation properties of both a monovalent negative ion and a neutral atom. The simulations show that, from the solvation point of view, ion adsorption is an uphill process due to the need to shed off the ion's solvation shell and displace water from the surface. Atom adsorption, on the other hand, has only a small barrier, related to the molecularity of the solvent. Both the electrostatic interaction of the ion with the solvent and the ion's solvent reorganization energy (the relevant parameter in the Marcus electron transfer theory) decrease as the surface is approached, whereas these parameters are not sensitive to the distance from the surface for the atom. This is a consequence of the importance of long-range electrostatic interactions for ion solvation and the importance of short-range interactions for atom solvation. The electric field either attracts or repels an ion to or from the surface, but the field has no influence on the solvent reorganization energy. By including the quantum-mechanical electron transfer between the metal surface and the ion/atom in solution in the MD simulation by using a model Hamiltonian, we calculated two-dimensional free energy surfaces for ion adsorption allowing for partial charge transfer, based on a fully molecular picture of ion solvation near the surface.  相似文献   

15.
The dynamics of NO(x) species adsorbed on BaO(100) have been investigated with ab initio molecular dynamics simulations at a temperature of 300 degrees C. Nitrites are found to continuously interconvert between different adsorption configurations. For both nitrites and nitrates, diffusion events between anion sites are observed. These findings support the use of spillover mechanisms often postulated in mechanistic models of catalysts based on the NO(x)() storage and reduction concept. The large number of possible adsorption configurations are reflected in broad calculated vibrational signatures. These results explain the corresponding property observed in experimental infrared measurements of NO(x)() species on BaO. The dynamic response of the BaO(100) surface is found to strongly depend on the nature of the surface-adsorbate interaction. The largest distortions are predicted for nitrite adsorption.  相似文献   

16.
The surface-normal electron density profile of an ionic liquid, [bmim][PF6], derived from x-ray reflectivity measurements, is compared with two independent molecular-dynamics simulations. It is shown that a meaningful comparison requires a detailed accounting for both thermal and nonthermal surface roughening effects. The former is due to thermally excited capillary waves, and the latter is due to the molecular zero-point motion and form. These quantities influence very significantly, but differently, the simulated and measured density profiles. Stripping off these effects from both types of profiles yields the intrinsic structure factor of the surface. The simulated intrinsic structure factors are found to deviate considerably from the measured one. The introduction of additional ad hoc surface roughness to the simulated profiles greatly reduces the deviation, however, no physical origin for this effect can be identified. The method employed in this study should prove useful for simulation-experiment comparisons of other liquid surfaces, provided they obey capillary-wave theory, as do almost all liquid surfaces studied to date by x-ray reflectivity.  相似文献   

17.
碱土金属氧化物掺杂氧化铈基电解质材料中的晶格缺陷   总被引:2,自引:0,他引:2  
基于能量最小化算法,对碱土金属氧化物(MgO、CaO、SrO、BaO)掺杂的氧化铈基电解质缺陷进行模拟计算. 研究了掺杂离子与空位缺陷形成能和氧空位跃迁能之间的关系. 结果说明,在碱土金属氧化物掺杂氧化铈的固溶反应中,氧空位缺陷是电荷补偿缺陷的首选形式,CaO和SrO较MgO和BaO 易溶于CeO2; Ca2+掺杂离子与氧空位缺陷对[CaCe″•VO••]×的结合能最高;复合缺陷[VO•••MCe″•VO••]••在CeO2中的状态不稳定;氧空位在次近邻间的跃迁能最低,因此最容易实现跃迁.  相似文献   

18.
The basicity of regular and low-coordinate (LC) sites (steps, edges and corners) at the surface of alkaline earths with NaCl structure (MgO, CaO, SrO, and BaO) has been investigated by using BF3 as a probe molecule. B-O and B-F distances; O-B-F bond angles; B-F asymmetric stretching frequencies; O, B and F 1s core-level binding energies; and the interaction energy of adsorbed BF3 were determined by means of DFT calculations on cluster models. These adsorption properties were compared with those of complexes of BF3 with molecules with various basicities (water, ammonia, phosphine, etc.). We show that many properties of adsorbed BF3, and in particular the experimentally accessible shifts in vibrational frequency, in B and F 1s core levels, and in BF3 desorption temperature, exhibit a linear correlation with the surface basicity as measured by the vertical ionization potential of the oxide anions. On the other hand, shifts of the O 1s core level binding energy do not provide a simple way to detect surface basicity. On a given oxide surface, the differing basicities of various sites result in measurable differences in adsorption properties. This suggests the potential use of BF3 as a probe molecule for titrating LC sites on the surface of ionic oxides.  相似文献   

19.
The surface tension of electrolyte solutions shows marked specific ion effects. We here show an important role for both ionic solvation energies and ionic dispersion potentials in determining this ion specific surface tension of salt solutions. The ion self-free energy changes when an ion moves from bulk solution into the interfacial region, with its decreasing water density profile. We will show that the solvation energies of different ions correlate very well with the surface tension of salt solutions. Inclusion of this distance-dependent self-free energy contribution brings qualitative agreement with experiments and the right Hofmeister series. This is so not only for surface tension changes but also for measured surface potentials. The inclusion of ionic dispersion interaction potentials further improves the agreement with experiments. We discuss how further progress in the theory of the surface tension of salts can be achieved.  相似文献   

20.
Strong Lewis acid catalysts are widely used in a variety of industrial processes including Cl/F exchange reactions. Aluminum fluorides (AlF3) have great potential for use in such reactions. Despite the importance of the surface in the catalytic process little is known about the detailed atomic scale structure of AlF3 surfaces. In the current study we employ state of the art surface thermodynamics calculations based on hybrid-exchange density functional theory to predict the composition and structure of the basal plane surface of alpha-AlF3 for the first time. We examine four possible terminations of the alpha-AlF3 (0001) surface and demonstrate that the surface is terminated by a layer containing two fluorine atoms per cell at all realistic fluorine partial pressures. The fluorine ions in the outermost layer of the material reconstruct to mask the Al3+ ion from the external gas phase and consequently we would expect this surface to be inactive as a Lewis acid catalyst in line with experimental observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号