首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A cascaded buffer based on nonlinear polarization rotation in semiconductor optical amplifiers is proposed, which is suitable for fast reconfiguration of buffering time at picoseconds. With the proposed buffer, sixty different buffer times are demonstrated at 2.5Gb/s.  相似文献   

2.
We consider and investigate an improved chromatic dispersion monitoring method using two RF tones with an inserted dispersion offset. This improved technique can be used to monitor both the positive and negative accumulated dispersion caused by optical fibers as well as other optical components in optical networks. We experimentally demonstrate that the monitoring range of the improved technique can be greater than 1150 ps/nm and the monitoring sensitivity better than 0.064 dB/ps/nm by selecting appropriate RF frequencies and dispersion offsets. Our investigations reveal that the RF modulation index should be greater than 10% but less than 20% so as to acquire a large monitoring range with a small power penalty. We also examine the CD monitoring errors caused by polarization mode dispersion (PMD) and self-phase modulation, and show that the use of a dispersion offset can effectively reduce the PMD-induced monitoring errors.  相似文献   

3.
The dynamics of a nonlinear optical loop mirror (NOLM) with feedback using a high birefringence fiber in the loop are investigated. The effect of rotating input polarization angle on the output power and polarization angle is numerically examined, illustrating the sensitivity of the NOLM with feedback to the input’s polarization state, as well as the polarization chaos present with sufficient input powers. The inclusion of a polarization-dependant loss in one or both arms of the coupler is also shown to change the output dynamical behaviour of the system.  相似文献   

4.
Using the full-vector plane-wave expansion method, a kind of PMMA-based polarization-maintaining microstructured optical fibre (PM-mPOF) is theoretically studied. Dependence of the cutoff wavelengths of the two orthogonal polarization states (polarized along the two principal axes of PM-mPOF) on the structure parameters of the fibre is investigated in detail A single-polarization single-mode (SPSM) PM-mPOF working in the visible region is designed and optimized with the result of the maximum SPSM bandwidth of 140nm.  相似文献   

5.
In accordance with the intrinsic structure of controllably-spun birefringent-fibre-based fibre polarization transformer (FPT), the Jones vector is calculated from point to point along the polarization transforming fibre by the cascade differential phase retarder model. It is the first time using this concise method to examine the phasedifference effect on the evolution of state of polarization (SOP) inside this special fibre component. Both the extinction ratio and orientation angle of SOP are calculated to give out a whole evolution history from linear polarization light at the slow spun end into circular polarization light at the fast spun end, and vice versa. The influence of phase-difference is discussed on the polarization transforming performance and further referential conclusion is provided for design and test of the FPT component.  相似文献   

6.
A novel all-optical switch based on nonlinear polarization mechanism using polarization-maintaining fiber ring with a polarization rotator is proposed. Optical switching with low threshold of mW order and optical limiting with broader limiting range, less fluctuation, higher damage threshold and response speed are demonstrated numerically. The deterioration of switching and the improvement of limiting originating from losses are also studied. Considering the tradeoff between switching power and bandwidth, the way to increase bandwidth is discussed.  相似文献   

7.
The multimode evolution, optical losses and wavelength response of non-adiabatic micro/nano-fiber (MNF) tapers are numerically simulated using a three-dimensional finite-difference beam propagation method. For a non-adiabatic MNF taper, it is illustrated that optical losses vary with the transition region length and the optical wavelength. We explain how the complicated multimode evolutions result in the complicated optical loss and wavelength response properties, especially when the waist diameters are large enough to allow much higher-order modes. These results may offer valuable references for trapping and guiding cold atoms in atom optics and practical application of micro/nano-devices.  相似文献   

8.
The delay of optical signal is determined by the refractive index and length of optical fiber, and temperature would have an intense influence on the index. To establish the relationship between refractive index and temperature, the temperature characteristics of refractive index was analyzed and the thermo-optical coefficient equation was derived according to the polarization of the induced electric dipole moment in SiO2 optical fiber. A measuring system based on optical fiber delay was carried out to measure the index within the temperature range of −30 °C to 70 °C and the experimental result was compared with the theoretical result. The final result shows that the relationship between refractive index and temperature is linear in the temperature range of discussion.  相似文献   

9.
The variation of polarization mode dispersion (PMD) with V-parameter in single mode optical fibers due to core-ellipticity is studied by performing numerical simulations taking into account both geometrical and thermal-stress-induced birefringences as well as the variation of fiber refractive indices with wavelength. Simple empirical relations are given for calculating the mean PMD for any value of core-ellipticity and V-parameter of a standard single mode fiber. It is observed that the mean PMD saturates for V ? 1.8 leading to very small second order PMD.  相似文献   

10.
Polarization mode dispersion is modelled as decoherence of polarization under the disturbance of environment and the coupling with frequency. This model is described by the quantum master equation and the Langevin equation. It can be predicted that the optical beam is depolarized exponentially in a fibre and the differential group delay (DGD) is proportional to the square root of the propagation distance. The distribution of the DGD can also be calculated.  相似文献   

11.
We demonstrate both numerically and experimentally that the phase-change due to fiber nonlinearities induces a bit-pattern-dependent rotation of the state-of-polarization which translates to uncertainty in the principal states of polarization. This effect severely limits the performance of the first-order PMD post-compensation and suggests the use of in-line compensators. Our simulation shows that fiber nonlinearities cause significant distortion (more than 4-dBm Q-penalty after 600-km transmission at 10 Gbit/s) after first-order PMD compensation. For optical powers as low as 3 dBm/channel in systems where PMD is not uniformly distributed along the transmission link, first-order PMD compensation may be ineffective.  相似文献   

12.
We experimentally demonstrate a wavelength-tunable erbium-doped fiber laser that is composed of a ring cavity and a single-mode fiber Sagnac interferometer in a new and simple arrangement. We find that the fiber laser output wavelength is tunable by adjusting the filter effect of the Sagnac fiber loop through a fiber polarization controller set there. The quasi-single-wavelength continuously tunable laser outputs could be achieved within some wavelength range. The multi-wavelength laser outputs could also be observed under some appropriate settings of the polarization controller. A theoretical demonstration of the wavelength tunability about the transmission-type Sagnac loop filter has also been achieved using the Jones calculus theory.  相似文献   

13.
Using the tunable pump pulses with about lOO fs pulse duration and 1064 nm central wavelength; the polarization-, wavelength- and power-dependent anti-Stokes lines are generated and modulated simultaneously in a polarization-maintaining photonie crystal fiber (PM-PCF) with two zero-dispersion wavelengths. By accurately controlling the polarization directions, the wavelength and the power of the pump pulse in the fiber anomalous region close to the second zero-dispersion wavelength of the PM-PCF, the output anti-Stokes pulse spectra can be tuned between 563 nm and 603 nm, which is in good agreement with the theoretical simulation. The color conversion of the mode image from yellow to orange is also observed with the different polarization pump pulses. These results can be attributed to the combined interaction between the fiber birefringence (including linear- and nonlinear- birefringence) and dispersion, and are attributed to phase-matching parametric four-wave mixing.  相似文献   

14.
We experimentally analyze the self-starting operation of a figure-eight mode-locked fiber laser. The design is based on a power-balanced nonlinear optical loop mirror (NOLM) with highly twisted low-birefringence fiber and a quarter-wave (QW) retarder in the loop. The NOLM operates by nonlinear polarization rotation. Self-starting mode-locking requires a careful adjustment of the NOLM low-power transmission, which is easily realized with our setup by adjusting the angle of the QW retarder. The laser is capable of generating ∼20 ps pulses at the fundamental repetition frequency of 0.78 MHz.  相似文献   

15.
Microstructured optical fibres (MOFs) have attracted much interest in recent times, due to their unique waveguiding properties that are vastly different from those of conventional step-index fibres. Tapering of these MOFs promises to significantly extend and enhance their capabilities. In this paper, we review the fabrication and characterisation techniques of these fibre tapers, and explore their fundamental waveguiding properties and potential applications. We fabricate photonic crystal fibre tapers without collapsing the air-holes, and confirm this with a non-invasive probing technique that enables the characterisation of the internal microstructure along the taper. We then describe the fundamental property of such tapers associated with the leakage of the core mode that leads to long-wavelength loss, influencing the operational bandwidth of these tapers. We also revisit the waveguiding properties in another form of tapered MOF photonic wires, which transition through waveguiding regimes associated with how strongly the mode is isolated from the external environment. We explore these regimes as a potential basis for evanescent field sensing applications, in which we can take advantage of air-hole collapse as an extra dimension to these photonic wires.  相似文献   

16.
If the recent PVLAS results on polarization changes of a linearly polarized laser beam passing through a magnetic field are interpreted by an axion-like particle, it is almost certain that it is not a standard QCD axion. Considering this, we study the general effective interactions of photons with spin-zero particles without restricting the latter to be a pseudo-scalar or a scalar, i.e., a parity eigenstate. At the lowest order in effective field theory, there are two dimension-5 interactions, each of which has previously been treated separately for a pseudo-scalar or a scalar particle. By following the evolution in an external magnetic field of the system of spin-zero particles and photons, we compute the changes in light polarization and the transition probability for two experimental set-ups: one-way propagation and round-trip propagation. While the first may be relevant for astrophysical sources of spin-zero particles, the second applies to laboratory optical experiments like PVLAS. In the one-way propagation, interesting phenomena can occur for special configurations of polarization where, for instance, transition occurs but light polarization does not change. For the round-trip propagation, however, the standard results of polarization changes for a pseudoscalar or a scalar are only modified by a factor that depends on the relative strength of the two interactions.  相似文献   

17.
A simple dispersion measurement technique has been proposed and demonstrated by using the self-seeding laser oscillation of a Fabry-Perot laser diode through an optical closed-loop path. When the multi-mode optical pulses emitted from the laser are re-injected into the laser after traversing a fiber-under-test, a single mode laser oscillation occurs through the closed-loop path due to the group velocity difference between the pulses of different wavelengths. We measured the dispersion parameter of the fiber-under-test from the modulation frequency changes required to induce single-mode laser oscillations through the optical closed-loop path. The maximum measurement error was less than 1.5% for the optical fibers as compared with a commercial instrument.  相似文献   

18.
We propose a novel all-optical format conversion from the return-to-zero (RZ) to the non-return-to-zero (NRZ) based on single semiconductor optical amplifier (SOA) and optical band-pass filter (OBE). We demonstrate the proof of the principle experiment at 10 Gbps by using the test SOA and OBF converter. The format conversion can be achieved with output extinction ratio of 11.51 dB. The BER is 5.5×10^-9 when the power of NRZ is - 10 dBm. The proposed scheme is robust and potential for applications in optical networks.  相似文献   

19.
Three aspects of coupling to Fabry-Perot cavities used in optical frequency standards are discussed: the use of a single-mode optical fiber to maintain coupling stability while improving vibration isolation of the cavity, the required stability of the coupling geometry, and the phase and polarization variations resulting from fiber movement. Optical fiber coupling should be useful when laser linewidths and stabilities at the Hertz level are desired.  相似文献   

20.
We demonstrate a multiwavelength fiber laser with ultradense wavelength spacing and ultrabroad bandwidth based on inhomogeneous loss mechanism with assistance of nonlinear polarization rotation. The inhomogeneous loss, implemented by incorporating a section of highly nonlinear fiber (HNLF) and a Sagnac filter in the laser cavity, can balance mode competition in erbium-doped fiber and result in ultradense multiwavelength generation. The bandwidth of the multiwavelength spectrum is greatly broadened owing to the intensity-dependent loss induced by nonlinear polarization rotation. Stable multiwavelength lasing with wavelength spacing of 0.08 nm and wavelength number up to 254 is achieved at room temperature. Moreover, multiwavelength tuning is realized through modifying polarization-dependent cavity loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号