首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate the decomposition of ammonia on bimetallic surfaces prepared by the deposition of a monolayer of Fe, Co, or Cu on a Pt(111) surface computationally and experimentally. We explore the correlation between predicted activities based on the nitrogen binding energies with experimental decomposition activity on these bimetallic and corresponding monometallic surfaces. Through density functional theory calculations and microkinetic modeling, it is predicted that the Fe-Pt-Pt(111) and Co-Pt-Pt(111) surfaces, with a monolayer of Fe or Co on top of Pt(111), are active toward decomposing ammonia. In contrast, the corresponding subsurface configurations, Pt-Fe-Pt(111) and Pt-Co-Pt(111) are inactive. These predictions were confirmed experimentally through temperature programmed desorption experiments. Decomposition was seen at temperatures below 350 K for the Fe-Pt-Pt(111) and Co-Pt-Pt(111) surfaces. For the Cu∕Pt(111) system, the surface, subsurface and parent metals were each predicted to be inactive, consistent with experiments, further validating the model predictions. The stability of these bimetallic surfaces in the presence of adsorbed nitrogen is also discussed.  相似文献   

2.
The performance of a Co-Pt powder and of Co-Pt catalysts supported on γ-Al2O3 and on the graphite-like carbon material Sibunit in selective CO oxidation in hydrogen-containing mixtures is considered. Fine particles of metal-metal solid solutions and intermetallides were obtained by the decomposition of a Co- and Pt-containing double complex salt in a hydrogen atmosphere at ~400°C. As compared to their Pt and Co monometallic counterparts, the bimetallic catalysts are more active and allow the CO concentration in hydrogen-containing mixtures to be reduced from 1 to 10?3 vol %. This effect is likely due to the formation of bimetallic particles of a Co-Pt solid solution on the support surface.  相似文献   

3.
A two-step method has been developed for precise size and composition control of bimetallic Pt-In nanoparticles. Very small (1.62 nm) PtIn seed nanoparticles with 1:1 metal ratio were prepared in the absence of capping agents followed by growth of Pt on their surface in the presence of oleyl amine as reducing and stabilizing agent. Nanoparticles with bulk compositions of Pt(4)In, Pt(3)In, and Pt(2)In could be synthesized with average diameter smaller than 3 nm. TEM, EDX, and XPS provided evidence for homogeneous growth without separate nucleation of pure platinum nanoparticles in the reaction solution. Pt(3)In nanoparticles were deposited onto SiO(2) surface by incipient wetness impregnation. Temperature-induced changes in the particle surface were monitored by in situ IR spectroscopy and CO adsorption. It was found that surface alloy composition of the particles could be tuned by using oxidizing or reducing atmospheres.  相似文献   

4.
5.
6.
Thin plasma polymer films were deposited from several liquid monomers (mainly siloxane‐type monomers) in a low‐temperature cascade arc torch (CAT) reactor. The effects of monomer structures and plasma parameters on internal stress in the films were experimentally studied. By appropriately adjusting these factors, the internal stress in the film was reduced nearly two orders of magnitude from 109 to 107 dyn/cm2. It was noted that the polymer films prepared from siloxane‐type monomers showed lower internal stress than their hydrocarbon counterpart. Fourier transform‐infrared spectroscopy (FTIR) studies indicated that a large amount of Si O Si structure from siloxane monomers, which are very flexible bonds, was preserved in the resultant plasma polymers. Ellipsometry results suggested that the internal stress can be qualitatively correlated with the refractive index of the plasma polymer film. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1577–1587, 1999  相似文献   

7.
Fullerene-related carbon nanostructures can be synthesized by an arc-in-liquid system as a cost-effective technique. In this work, we investigated the effects of additional carbon sources from liquid media that were alcohols (C(m)H(2m+1)OH, m = 1-8), alkanes (C(m)H(2m+2), m = 6-7), and aromatic compounds (C6H6-C(n)H(2n), n = 1-2) on the product structures and the yield of nanocarbon-rich deposits. It was found that carbon nanoparticles (CNPs) that included multi-walled carbon nanotubes (MW-CNTs) and multi-shelled carbon nanoparticles were produced at high concentrations in the hard deposit at the cathode tip formed by the arc in the alcohols and alkanes, similar to that in a water environment. Importantly, not only graphite electrodes but also these organic compounds played a role of a carbon source to produce CNPs that led to an approximately 8-100 times higher yield than the arc-in-water system. There was a tendency that the increase in alcohol concentration and carbon content in the organic molecules positively affected the yield and production rate of the CNPs. However, the selectivity of MW-CNTs was significantly reduced when aromatic compounds were used. Structural analyses by dynamic light scattering and Raman spectroscopy revealed the dependency of the hydrodynamic particle sizes of CNPs and their crystallinity on the liquid components. For a discussion on the reaction mechanism, optical emission spectra of the arc plasma were analyzed to estimate the arc temperature. In addition, liquid byproducts were analyzed by a UV-vis absorbance spectrometer.  相似文献   

8.
The synthesis of boron-doped carbon nanoparticles (BCNP) has been achieved through a solution plasma process without the addition of a metal catalyst source using a mixture of benzene and triphenyl borate as precursor. The electrocatalytic activity toward the oxygen reduction reaction (ORR) of BCNP can be improved in terms of onset potential and current density compared to that of undoped carbon nanoparticles in alkaline solution. Moreover, BCNP possesses superior long-term durability and tolerance to methanol oxidation in the ORR.  相似文献   

9.
ZrO2 nanoparticles were synthesized through arc discharge of zirconium electrodes in deionized (DI) water. X-ray diffraction (XRD) analysis of the as prepared nanoparticles indicates formation a mixture of nanocrystalline ZrO2 monoclinic and tetragonal phase structures. Transmission electron microscopy (TEM) images illustrate spherical ZrO2 nanoparticles with 7–30 nm diameter range, which were formed during the discharge process with 10 A arc current. The average particle size was found to increase with the increasing arc current. X-ray photoelectron spectroscopy (XPS) analysis confirms formation of ZrO2 at the surface of the nanoparticles. Surface area of the sample prepared at 10 A arc current, measured by BET analysis, was 44 m2/g. Photodegradation of Rhodamine B (Rh. B) shows that the prepared samples at lower currents have a higher photocatalytic activity due to larger surface area and smaller particle size.  相似文献   

10.
Recently, structural manipulation of tetrahedral amorphous carbon (ta-C) film at the nanometer scale has attracted much attention. We demonstrate a novel method to obtain a nanocomposite film where nanoscale columns of graphitic phase are embedded in a tetrahedral amorphous carbon matrix. When using a Si substrate with nanosized Ni dots on the surface, graphitic columns grew selectively on the Ni dots, while a dense ta-C film was deposited on the bare Si surface. The growth of the graphitic columns is closely related to the nanosized Ni dots that catalyze the graphitic-carbon formation in a filtered vacuum arc deposition condition.  相似文献   

11.
Nickel nanoparticles were obtained by the reduction in hydrazine aqueous media of nickel acetate as a precursor supported on activated carbon of high surface area. Classical catalysts using nickel acetate or nitrate were prepared for comparison. The catalysts were characterized by N(2) physisorption, H(2)-TPR, H(2)-adsorption, TPD, TEM, and XRD, and tested in the gas phase hydrogenation of benzene. Hydrazine catalysts were found much more active in benzene hydrogenation than corresponding classically prepared catalysts. Remarkably, their reactivity is comparable (turn-over frequency of 0.2001-0.2539 s(-1) at 393 K) to that of Pt classical catalysts supported on activated carbon in the same conditions. Evidence is given for the existence of the hydrogen spillover effect in benzene hydrogenation, not reported before in the literature. As a result of the hydrogen spillover effect, catalysts performances can be explained by a combination of surface metal atom reactivity, metal-support interaction strength, and specific surface area extent. Maximum effect is observed with hydrazine preparation method, for 1% Ni content and nickel acetate as a precursor. Unexpectedly, it was also found that hydrazine preparation increases the specific area of the catalysts.  相似文献   

12.
A new class of monodisperse water-soluble magnetite nanoparticles was prepared by a simple and inexpensive method based on a polyol process, and their potential as MRI contrast agents was investigated.  相似文献   

13.
Carbon blacks synthesized by the liquid phase plasma process in benzene with and without distilled water showed a very high charging capacity of about 1,540–1,600 mAh/g depending on the liquid involved. CBs synthesized from organic benzene only were found to have a higher specific surface area compared to CBs from benzene with water, contributing to the higher charging capacity of 1,600 mAh/g. The charge–discharge cyclic stability (measured from 2 to 20 cycles) of the CBs synthesized from benzene was significantly improved with the addition of water from 58 % to about 70 % reversible capacity. Our results suggest a promising method of producing carbon black nanoparticles at low temperatures with a reasonable performance applicable for lithium ion batteries.  相似文献   

14.
A simple low-energy two-step dilution process has been applied in oil/surfactant/water systems with pentaoxyethylene lauryl ether (C12E5), dodecyldimethylammonium bromide, sodium bis(2-ethylhexyl)sulfosuccinate, sodium n-dodecyl sulfate-pentanol, and hexadecyltrimethylammonium bromide-pentanol. Appropriate formulations were chosen for the concentrate to be diluted with water to generate oil-in-water (O/W) emulsions or nanoemulsions. For the system of decane/C12E5/water, bluish, transparent nanoemulsions having droplet radii of the order of 15 nm were formed, only when the initial concentrate was a bicontinuous microemulsion, whereas opaque emulsions were generated if the concentrate began in an emulsion-phase region. Nanoemulsions generated in the system decane/C12E5/water have been investigated both by dynamic light scattering (DLS) and contrast-variation small-angle neutron scattering (SANS). The SANS profiles show that nanodroplets exist as spherical core-shell (decane-C12E5) particles, which suffer essentially no structural change on dilution with water, at least for volume fractions phi down to 0.060. These results suggest that the nanoemulsion droplet structure is mainly controlled by the phase behavior of the initial concentrate and is largely independent of dilution. A discrepancy between apparent nanoemulsion droplet sizes was observed by comparing DLS and SANS data, which is consistent with long-range droplet interactions occurring outside of the SANS sensitivity range. These combined phase behavior, SANS, and DLS results suggest a different reason for the stability/instability of nanoemulsions compared with earlier studies, and here it is proposed that a general mechanism for nanoemulsion formation is homogeneous nucleation of oil droplets during the emulsification.  相似文献   

15.
Experiments concerning the growth rate and quality of an amorphous hydrogenated carbon film deposited in a reactor based on the supersonic expansion of an arc plasma are reported. In order to be able to calculate the deposition rate, an existing flow model has been completed with chernical reaction rate equations. The methane gas that is injected in the arc appears to be dissociated and ionized completely. The calculated deposition rates agree well with the experimental values obtained within-situ ellipsometry. The growth rates are an order of magnitude larger than those reported in the literature. Still, the film quality, expressed in terms of refractive index, optical bandgap, and hardness, is similar to those obtained by other authors.  相似文献   

16.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

17.
Nanosized Pt-Ru alloy and Pt13Ru27 intermetallic compound particles dispersed in a carbon matrix were obtained for the first time directly during the preparation of the composite. The alloying of the Pt and Ru particles occurred at IR pyrolysis intensities corresponding to temperatures above 700°C over the whole homogeneity range of solid solutions based on platinum. Metallic nanoparticles were round-shaped (the mean size 6–8 nm) and had a narrow particle-size distribution.  相似文献   

18.
We report on an amperometric sensor for ascorbic acid (AA) that is based on highly dense gold-silver nanotubes in a chitosan film on a glassy carbon electrode. The nanotubes were synthesized by a poly(vinyl pyrrolidone)-mediated polyol method employing a replacement reaction with silver nanowires as templates, and were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Under the optimal conditions, the sensor exhibits good electrocatalytic activity towards the oxidation of AA, and this enables the determination of AA in the 5 μM to 2 mM concentration range, with a detection limit at 2 μM (at an S/N of 3). The response time is 2 s. The sensor displays good reproducibility, selectivity, sensitivity, and long-term stability.
Figure
In this paper, an amperometric electrochemical sensor for detection of ascorbic acid was fabricated based on highly dense gold-silver nanotubes and chitosan film. The biosensor showed good reproducibility, anti-interferant ability, high sensitivity, low detection limit, fast response, and long-term stability.  相似文献   

19.
The scattering spectra of single gold, silver, and bimetallic gold-silver particles (both core-shell and alloyed) have been examined using dark-field microscopy. The results show that the plasmon resonances for the bimetallic particles are broader than those of the pure silver or pure gold particles. However, plots of the width of the plasmon resonance vs resonance frequency for the core-shell and alloyed samples are very similar. This implies that the broadening is due to the frequency dependence of the dielectric constants of the particles. For the core-shell particles, scattering at the interface between the two metals does not seem to be a significant effect.  相似文献   

20.
A gas-phase, one-step method for producing various aerosol carbon nanostructures is described. The carbon nanostructures can be selectively tailored with either straight, coiled, or sea urchin-like structures by controlling the size of Ni-Al bimetallic nanoparticles and the reaction temperature. The carbon nanostructures were grown using both conventional spray pyrolysis and thermal chemical vapor deposition. Bimetallic nanoparticles with catalytic Ni (guest) and non-catalytic Al (host) matrix were reacted with acetylene and hydrogen gases. At the processing temperature range of 650-800 °C, high concentration straight carbon nanotubes (S-CNTs) with a small amount of coiled carbon nanotubes (C-CNTs) can be grown on the surface of seeded bimetallic nanoparticle size <100 nm, resulting from consumption of the melting Al matrix sites; sea urchin-like carbon nanotubes (SU-CNTs) of small diameter (~10±4 nm) can be grown on the bimetallic nanoparticle size >100 nm, resulting from the significant size reduction of the available Ni sites due to thermal expansion of molten Al matrix sites without consumption of Al matrix. However, at the processing temperature range of 500-650 °C, C-CNTs can be grown on the bimetallic nanoparticle size <100 nm due to the presence of Al matrix in the bimetallic nanoparticles; SU-CNTs of large diameter (~60±13 nm) can also be grown on the bimetallic nanoparticle size >100 nm due to the isolation of Ni sites in the Al matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号