首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.  相似文献   

2.
We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology, where the Phi(Delta) value can be controlled by changing the symmetry of pi conjugated systems without heavy elements, appears useful for preparing novel photosensitizers.  相似文献   

3.
Femtosecond-to-microsecond broadband transient absorption experiments are reported for Cy(3)PAu(2-naphthyl) (1), (Cy(3)PAu)(2)(2,6-naphthalenediyl) (2), and (Cy(3)PAu)(2)(2,7-naphthalenediyl) (3), where Cy = cyclohexyl. Global and target analyses of the data, based on a sequential kinetic model, reveal four spectral components. These components are assigned to (1) excited state absorption (ESA) of the ligand-centered S(1) state; (2) ESA of a receiver ligand-to-metal or metal-to-ligand charge transfer triplet state (τ(1) ≤ 300 fs); (3) ESA of the vibrationally excited, ligand-centered T(1) state (τ(3) = 7-10 ps); and (4) ESA of the relaxed T(1) state. Intersystem crossing (ISC) occurs in hundreds of femtoseconds, while internal conversion (IC) in the triplet manifold is slow (τ(2) ≈ 2 ps). The relaxed T(1) state shows biphasic decay kinetics in 2 and 3 with lifetimes of hundreds of picoseconds and hundreds of nanoseconds in air-saturated conditions, while only monophasic decay is observed in 1 under identical conditions. The primary decay pathway of the T(1) state is assigned to quenching by O(2), while the secondary channel is tentatively assigned to self-quenching or triplet-triplet annihilation. The ISC rate in 1 is not modulated significantly by the incorporation of a second heavy-atom group effecter. Instead, the position at which the second Au(I)-phosphine group is attached plays a noticeable role in the ISC rate, showing a 3-fold decrease in that of 2 compared to that of 3. The results challenge the conventional view that the rate of IC is larger than that of ISC, lending further support to the emerging kinetic model proposed for other transition-metal complexes. Gold(I) now joins the exclusive group of transition metals known to form organometallic complexes exhibiting excited-state nonequilibrium dynamics.  相似文献   

4.
The syntheses, physical, and photophysical properties of a family of complexes having the general formula [M2(L)(mcb)(Ru(4,4'-(X)2-bpy)2)](PF6)3 (where M = Mn(II) or Zn(II), X = CH3 or CF3, mcb is 4'-methyl-4-carboxy-2,2'-bipyridine, and L is a Schiff base macrocycle derived from 2,6-diformyl-4-methylphenol and bis(2-aminoethyl)-N-methylamine) are described. The isostructural molecules all consist of dinuclear metal cores covalently linked to a Ru(II) polypyridyl complex. Photoexcitation of [Mn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (4) in deoxygenated CH2Cl2 solution results in emission characteristic of the 3MLCT excited state of the Ru(II) chromophore but with a lifetime (tau(obs) = 5.0 +/- 0.1 ns) and radiative quantum yield (Phi(r) approximately 7 x 10(-4)) that are significantly attenuated relative to the Zn(II) model complex [Zn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (6) (tau(obs) = 730 +/- 30 ns and Phi(r) = 0.024, respectively). Quenching of the 3MLCT excited state is even more extensive in the case of [Mn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (3), whose measured lifetime (tau(obs) = 45 +/- 5 ps) is >10(4) shorter than the corresponding model complex [Zn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (5) (tau(obs) = 1.31 +/- 0.05 micros). Time-resolved absorption measurements on both Mn-containing complexes at room-temperature revealed kinetics that were independent of probe wavelength; no spectroscopic signatures for electron-transfer photoproducts were observed. Time-resolved emission data for complex 4 acquired in CH2Cl2 solution over a range of 200-300 K could be fit to an expression of the form k(nr) = k0 + A x exp{-DeltaE/kB T} with k0 = 1.065 +/- 0.05 x 10(7) s(-1), A = 3.7 +/- 0.5 x 10(10) s(-1), and DeltaE = 1230 +/- 30 cm(-1). Assuming an electron-transfer mechanism, the variable-temperature data on complex 4 would require a reorganization energy of lambda approximately 0.4-0.5 eV which is too small to be associated with charge separation in this system. This result coupled with the lack of enhanced emission at temperatures below the glass-to-fluid transition of the solvent and the absence of visible absorption features associated with the Mn(II)2 core allows for a definitive assignment of Dexter transfer as the dominant excited-state reaction pathway. A similar conclusion was reached for complex 3 based in part on the smaller driving force for electron transfer (DeltaG0(ET) = -0.1 eV), the increase in probability of Dexter transfer due to the closer proximity of the donor excited state to the dimanganese acceptor, and a lack of emission from the compound upon formation of an optical glass at 80 K. Electronic coupling constants for Dexter transfer were determined to be approximately 10 cm(-1) and approximately 0.15 cm(-1) in complexes 3 and 4, respectively, indicating that the change in spatial localization of the excited state from the bridge (complex 3) to the periphery of the chromophore (complex 4) results in a decrease in electronic coupling to the dimanganese core of nearly 2 orders of magnitude. In addition to providing insight into the influence of donor/acceptor proximity on exchange energy transfer, this study underscores the utility of variable-temperature measurements in cases where Dexter and electron-transfer mechanisms can lead to indistinguishable spectroscopic observables.  相似文献   

5.
A chromophore-donor-acceptor assembly [Ru(bpyCOOH)(bpyCH(2)MV(2+)) (bpyCH(2)PTZ)](4+)(1) (where bpyCOOH = 4-carboxylic acid-4'-methyl-2,2'-bipyridine, bpyCH(2)MV(2+) = 1-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]-1'-methyl-4,4'-bipyridinediium, and bpyCH(2)PTZ = 10-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]phenothiazine) has been adsorbed on the surface of nanocrystalline ZrO(2) and its excited state properties studied by emission and transient absorption spectroscopy. In deaerated acetonitrile solution, the complex emits weakly with an emission quantum yield of phi(em) approximately equal to 0.01 with an excited-state lifetime of tau approximately equal to 20 ps. Emission from the surface-adsorbed complex is intense, with phi(em) approximately equal to 0.4 and tau approximately equal to 40 ns. The increase in emission on the surface is likely due to a significant inhibition to the electron-transfer quenching of the metal-to-ligand charge transfer (MLCT) excited state caused by surface adsorption-induced changes in the redox potentials. Transient (nanosecond time scale) absorption monitoring, following laser flash photolysis, reveals the presence of a transient or transients that are formed during the flash. Transient spectral changes that occur during and after the flash are consistent with the formation and decay of the intermediate ZrO(2)-[Ru(bpyCOOH)(bpyCH(2)MV(+*))(bpyCH(2)PTZ(+*))](4+). It returns to the ground state by both intramolecular and intermolecular processes. Intramolecular electron transfer occurs with k(BET) = 6.3 x 10(6) s(-1) (tau = 160 ns), which is comparable to the rate constant for back-electron transfer in solution. The back-electron transfer is a second-order process and is much slower, with k(BET) = 390 M(-1) s(-1) (tau = 2.6 ms).  相似文献   

6.
We utilize femtosecond-to-microsecond time domain pump-probe transient absorption spectroscopy to interrogate for the first time the electronically excited triplet state of individualized single-wall carbon nanotubes (SWNTs). These studies exploit (6,5) chirality-enriched SWNT samples and poly[2,6-{1,5-bis(3-propoxysulfonic acid sodium salt)}naphthylene]ethynylene (PNES), which helically wraps the nanotube surface with periodic and constant morphology (pitch length = 10 ± 2 nm), providing a self-assembled superstructure that maintains structural homogeneity in multiple solvents. Spectroscopic interrogation of such PNES-SWNT samples in aqueous and DMSO solvents using E(22) excitation and a white-light continuum probe enables E(11) and E(22) spectral evolution to be monitored concomitantly. Such experiments not only reveal classic SWNT singlet exciton relaxation dynamics and transient absorption signatures but also demonstrate spectral evolution consistent with formation of a triplet exciton state. Transient dynamical studies evince that (6,5) SWNTs exhibit rapid S(1)→T(1) intersystem crossing (ISC) (τ(ISC) ~20 ps), a sharp T(1)→T(n) transient absorption signal (λ(max)(T(1)→T(n)) = 1150 nm; full width at half-maximum ≈ 350 cm(-1)), and a substantial T(1) excited-state lifetime (τ(es) ≈ 15 μs). Consistent with expectations for a triplet exciton state, T(1)-state spectral signatures and T(1)-state formation and decay dynamics for PNES-SWNTs in aqueous and DMSO solvents, as well as those determined for benchmark sodium cholate suspensions of (6,5) SWNTs, are similar; likewise, studies that probe the (3)[(6,5) SWNT]* state in air-saturated solutions demonstrate (3)O(2) quenching dynamics reminiscent of those determined for conjugated aromatic hydrocarbon excited triplet states.  相似文献   

7.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

8.
The vibrational contribution to DeltaS of the low-spin ((3)T(1)) to high-spin ((5)E) spin transition in two 3d(4) octahedral systems [Mn(III)(pyrol)(3)tren] and [Cr(depe)(2)I(2)] have been estimated by means of DFT calculations (B3LYP/CEP-31G) of the vibrational normal-modes frequencies. The obtained value at the transition temperature for the Mn(iii) complex is DeltaS(vib)(44 K) = 6.3 J K(-1) mol(-1), which is comparable with the proposed Jahn-Teller contribution of R ln3 = 9.1 J K(-1) mol(-1) and which is approximately half of the experimentally determined 13.8 J K(-1) mol(-1). The corresponding value for the Cr(ii) complex is DeltaS(vib)(171.45 K) = 46.5 J K(-1) mol(-1), as compared to the experimental value of 39.45 J K(-1) mol(-1). The analysis of the vibrational normal modes reveals that for the d(4) systems under study, contrary to Fe(ii) d(6) systems, not all metal-ligand stretching vibrations make a contribution. For the Mn(iii) complex, the only vibration that contributes to DeltaS(vib) involve the nitrogens occupying the Jahn-Teller axis, while in the case of Cr(ii) the contributing vibrations involve the Cr-I bonds. Low-frequency modes due to ring vibrations, metal-ligand bending and movement of the molecule as a whole also contribute to the vibrational entropy associated with the spin transition.  相似文献   

9.
The paper reports the synthesis, structural characterization, electrochemistry, ultrafast time-resolved infrared (TRIR) and transient absorption (TA) spectroscopy associated with two independent d (8) square planar Pt(II) diimine chromophores, Pt(dnpebpy)Cl 2 ( 1) and Pt(dnpebpy)(C[triple bond]Cnaph) 2 ( 2), where dnpebpy = 4,4'-(CO 2CH 2- (t) Bu) 2-2,2'-bipyridine and CCnaph = naphthylacetylide. The neopentyl ester substitutions provided markedly improved complex solubility relative to the corresponding ethyl ester which facilitates synthetic elaboration as well as spectroscopic investigations. Following 400 nm pulsed laser excitation in CH 2Cl 2, the 23 cm (-1) red shift in the nu C=O vibrations in 1 are representative of a complex displaying a lowest charge-transfer-to-diimine (CT) excited state. The decay kinetics in 1 are composed of two time constants assigned to vibrational cooling of the (3)CT excited-state concomitant with its decay to the ground state (tau = 2.2 +/- 0.4 ps), and to cooling of the formed vibrationally hot ground electronic state (tau = 15.5 +/- 4.0 ps); we note that an assignment of the latter to a ligand field state cannot be excluded. Ultrafast TA data quantitatively support these assignments yielding an excited-state lifetime of 2.7 +/- 0.4 ps for the (3)CT excited-state of 1 and could not detect any longer-lived species. The primary intention of this study was to develop a Pt (II) complex ( 2) bearing dual infrared spectroscopic tags (C[triple bond]C attached to the metal and CO (ester) attached to the diimine ligand) to independently track the movement of charge density in different segments of the molecule following pulsed light excitation. Femtosecond laser excitation of 2 in CH 2Cl 2 at 400 nm simultaneously induces a red-shift in both the nu C=O (-30 cm (-1)) and the nu C[triple bond]C (-61 cm (-1)) vibrations. The TRIR data in 2 are consistent with a charge transfer assignment, and the significant decrease of the energy of the nu C[triple bond]C vibration suggests a considerable contribution from the acetylide ligands in the highest occupied molecular orbital. Therefore, we assign the lowest energy optical transitions in 2 as a combination of metal-to-ligand and ligand-to-ligand charge transfers. The excited-state of 2 is emissive at RT, with an emission maximum at 715 nm, quantum yield of 0.0012, and lifetime of 23 ns.  相似文献   

10.
Femtosecond time-resolved velocity map imaging experiments are reported on several vibronic levels of the second absorption band (B-band) of CH(3)I, including vibrational excitation in the ν(2) and ν(3) modes of the bound (3)R(1)(E) Rydberg state. Specific predissociation lifetimes have been determined for the 2(0)(1) and 3(0)(1) vibronic levels from measurements of time-resolved I*((2)P(1/2)) and CH(3) fragment images, parent decay, and photoelectron images obtained through both resonant and non-resonant multiphoton ionization. The results are compared with our previously reported predissociation lifetime measurements for the band origin 0(0) (0) [Gitzinger et al., J. Chem. Phys. 132, 234313 (2010)]. The result, previously reported in the literature, where vibrational excitation to the C-I stretching mode (ν(3)) of the CH(3)I (3)R(1)(E) Rydberg state yields a predissociation lifetime about four times slower than that corresponding to the vibrationless state, whereas predissociation is twice faster if the vibrational excitation is to the umbrella mode (ν(2)), is confirmed in the present experiments. In addition to the specific vibrational state lifetimes, which were found to be 0.85 ± 0.04 ps and 4.34 ± 0.13 ps for the 2(0)(1) and 3(0)(1) vibronic levels, respectively, the time evolution of the fragment anisotropy and the vibrational activity of the CH(3) fragment are presented. Additional striking results found in the present work are the evidence of ground state I((2)P(3/2)) fragment production when excitation is produced specifically to the 3(0)(1) vibronic level, which is attributed to predissociation via the A-band (1)Q(1) potential energy surface, and the indication of a fast adiabatic photodissociation process through the repulsive A-band (3)A(1)(4E) state, after direct absorption to this state, competing with absorption to the 3(0)(1) vibronic level of the (3)R(1)(E) Rydberg state of the B-band.  相似文献   

11.
Ultrafast laser flash photolysis (266 nm) of para- and ortho-biphenyl azide in acetonitrile produces azide excited states that have broad absorption bands centered at 480 nm. The para-biphenyl azide excited singlet state has a lifetime of 100 fs. The excited-state lifetime of the ortho-azide isomer is 450 +/- 150 fs. Decay of the azide excited states is accompanied by the formation of the corresponding known singlet nitrenes (para, lambdamax = 350 nm, ortho, lambdamax = 400 nm). Singlet para-biphenylnitrene is born with excess energy and undergoes vibrational cooling with a time constant of 11 ps to form the long-lived (tau approximately 9 ns) relaxed singlet nitrene. Singlet ortho-biphenylnitrene decays with a lifetime of 16 ps in acetonitrile at ambient temperature.  相似文献   

12.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

13.
The picosecond excited-state dynamics of several derivatives have been investigated using high photon energy excitation combined with picosecond luminescence detection. Instrument response-limited fluorescence (tau(1) approximately equal to 3-5 ps) at 500 nm was observed for all of the complexes, while longer-lived emission (tau(2) > 50 ps), similar in energy, was observed for only some of the complexes. Interestingly, the presence of tau(2) required substitution at the 4,4-positions of the bipyridine ligands and D(3) symmetry for the complex; only the 4,4-substituted homoleptic complexes exhibited tau(2). On the basis of previous assignments of the ultrafast dynamics measured for Ru(bpy)(2+)3 and Ru(dmb)(2+)3, tau(2) has been tentatively ascribed to relaxation from higher electronic or vibrational levels in the triplet manifold having slightly more triplet character than the state responsible for tau(1). However, given that the kinetics for these transition metal complexes are highly dependent on both pump and probe wavelengths and that there is considerable interest in utilizing such complexes for electron transfer in the nonergodic limit, further characterization of the state giving rise to tau(2) is warranted.  相似文献   

14.
The photoreactions of the Pr ground state of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 have been investigated by picosecond time-resolved mid-infrared spectroscopy at ambient temperature. With femtosecond excitation of the Pr state at 640 nm, the photoisomerized Lumi-R product state is generated with kinetics and associated difference spectra indicative of vibrational cooling with tau(1) = 3 ps time constant and excited state decay with tau(1) = 3 ps, tau(2) = 14 ps, and tau(3) = 134 ps time constants. The Lumi-R state is characterized by downshifted absorption of three C=C modes assigned to C(15)=C(16), C(4)=C(6), and a delocalized C=C mode, in addition to the downshifted C(19)=O mode. The Lumi-R minus Pr difference spectrum is indicative of global restructuring of the chromophore on the ultrafast timescale, which is discussed in light of C(15) Z/E photoisomerization in addition to changes near C(5), which could be low bond order torsional angle changes.  相似文献   

15.
Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.  相似文献   

16.
Femto- to picosecond excited-state dynamics of the complexes [Re(L)(CO)(3)(N,N)](n) (N,N = bpy, phen, 4,7-dimethyl-phen (dmp); L = Cl, n = 0; L = imidazole, n = 1+) were investigated using fluorescence up-conversion, transient absorption in the 650-285 nm range (using broad-band UV probe pulses around 300 nm) and picosecond time-resolved IR (TRIR) spectroscopy in the region of CO stretching vibrations. Optically populated singlet charge-transfer (CT) state(s) undergo femtosecond intersystem crossing to at least two hot triplet states with a rate that is faster in Cl (~100 fs)(-1) than in imidazole (~150 fs)(-1) complexes but essentially independent of the N,N ligand. TRIR spectra indicate the presence of two long-lived triplet states that are populated simultaneously and equilibrate in a few picoseconds. The minor state accounts for less than 20% of the relaxed excited population. UV-vis transient spectra were assigned using open-shell time-dependent density functional theory calculations on the lowest triplet CT state. Visible excited-state absorption originates mostly from mixed L;N,N(?-) → Re(II) ligand-to-metal CT transitions. Excited bpy complexes show the characteristic sharp near-UV band (Cl, 373 nm; imH, 365 nm) due to two predominantly ππ*(bpy(?-)) transitions. For phen and dmp, the UV excited-state absorption occurs at ~305 nm, originating from a series of mixed ππ* and Re → CO;N,N(?-) MLCT transitions. UV-vis transient absorption features exhibit small intensity- and band-shape changes occurring with several lifetimes in the 1-5 ps range, while TRIR bands show small intensity changes (≤5 ps) and shifts (~1 and 6-10 ps) to higher wavenumbers. These spectral changes are attributable to convoluted electronic and vibrational relaxation steps and equilibration between the two lowest triplets. Still slower changes (≥15 ps), manifested mostly by the excited-state UV band, probably involve local-solvent restructuring. Implications of the observed excited-state behavior for the development and use of Re-based sensitizers and probes are discussed.  相似文献   

17.
High-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy of a classical coordination complex, Mn(acac)(3) (Hacac = 2,4-pentanedione), has been performed on both solid powder and frozen solution (in CH(2)Cl(2)/toluene, 3:2 v/v) samples. Parallel mode detection X-band EPR spectra exhibiting resolved (55)Mn hyperfine coupling were additionally obtained for frozen solutions. Magnetic susceptibility and field-dependent magnetization measurements were also made on powder samples. Analysis of the entire EPR data set for the frozen solution allowed extraction of the relevant spin Hamiltonian parameters: D = -4.52(2); |E| = 0.25(2) cm(-1); g(iso) = 1.99(1). The somewhat lower quality solid-state HFEPR data and the magnetic measurements confirmed these parameters. These parameters are compared to those for other complexes of Mn(III) and to previous studies on Mn(acac)(3) using X-ray crystallography, solution electronic absorption spectroscopy, and powder magnetic susceptibility. Crystal structures have been reported for Mn(acac)(3) and show tetragonal distortion, as expected for this Jahn-Teller ion (Mn(3+), 3d(4)). However, in one case, the molecule exhibits axial compression and, in another, axial elongation. The current HFEPR studies clearly show the negative sign of D, which corresponds to an axial (tetragonal) elongation in frozen solution. The correspondence among solution and solid-state HFEPR data, solid-state magnetic measurements, and an HFEPR study by others on a related complex indicates that the form of Mn(acac)(3) studied here exhibits axial elongation in all cases. Such tetragonal elongation has been found for Mn(3+) and Cr(2+) complexes with homoleptic pseudooctahedral geometry as well as for Mn(3+) in square pyramidal geometry. This taken together with the results obtained here for Mn(acac)(3) in frozen solution indicates that axial elongation could be considered the "natural" form of Jahn-Teller distortion for octahedral high-spin 3d(4) ions. The previous electronic absorption data together with current HFEPR and magnetic data allow estimation of ligand-field parameters for Mn(acac)(3).  相似文献   

18.
Ultrafast electronic-vibrational relaxation upon excitation of the singlet charge-transfer b (1)A' state of [Re(L)(CO) 3(bpy)] ( n ) (L = Cl, Br, I, n = 0; L = 4-Et-pyridine, n = 1+) in acetonitrile was investigated using the femtosecond fluorescence up-conversion technique with polychromatic detection. In addition, energies, characters, and molecular structures of the emitting states were calculated by TD-DFT. The luminescence is characterized by a broad fluorescence band at very short times, and evolves to the steady-state phosphorescence spectrum from the a (3)A" state at longer times. The analysis of the data allows us to identify three spectral components. The first two are characterized by decay times tau 1 = 85-150 fs and tau 2 = 340-1200 fs, depending on L, and are identified as fluorescence from the initially excited singlet state and phosphorescence from a higher triplet state (b (3)A"), respectively. The third component corresponds to the long-lived phosphorescence from the lowest a (3)A" state. In addition, it is found that the fluorescence decay time (tau 1) corresponds to the intersystem crossing (ISC) time to the two emissive triplet states. tau 2 corresponds to internal conversion among triplet states. DFT results show that ISC involves electron exchange in orthogonal, largely Re-localized, molecular orbitals, whereby the total electron momentum is conserved. Surprisingly, the measured ISC rates scale inversely with the spin-orbit coupling constant of the ligand L, but we find a clear correlation between the ISC times and the vibrational periods of the Re-L mode, suggesting that the latter may mediate the ISC in a strongly nonadiabatic regime.  相似文献   

19.
Supercollision relaxation of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) with D35Cl is investigated using high-resolution transient IR diode laser absorption spectroscopy at 4.4 microm. Highly excited pyrazine is prepared by pulsed UV excitation at 266 nm, followed by rapid radiationless decay to the ground electronic state. The rotational energy distribution of the scattered DCl (v = 0,J) molecules with J = 15-21 is characterized by T(rot) = 755+/-90 K. The relative translational energy increases as a function of rotational quantum number for DCl with T(rel) = 710+/-190 K for J = 15 and T(rel) = 1270+/-240 K for J = 21. The average change in recoil velocity correlates with the change in rotational angular momentum quantum number and highlights the role of angular momentum in energy gain partitioning. The integrated energy-transfer rate for appearance of DCl (v = 0,J = 15-21) is k(2)(int) = 7.1x10(-11) cm3 molecule(-1) s(-1), approximately one-eighth the Lennard-Jones collision rate. The results are compared to earlier energy gain measurements of CO2 and H2O.  相似文献   

20.
Vibrational circular dichroism (VCD) spectra of a series of [M(III)(acac)3] (acac = acetylacetonato; M = Cr, Co, Ru, Rh, Ir, and Al) and [M(III)(acac)2(dbm)] (dbm = dibenzoylmethanato; M = Cr, Co, and Ru) have been investigated experimentally and/or theoretically in order to see the effect of the central metal ion on the vibrational dynamics of ligands. The optical antipodes give the mirror-imaged spectra in the region of 1700-1000 cm(-1). The remarkable effect of the central metal ion is observed experimentally on the VCD peaks due to C-O stretches (1500-1300 cm(-1)) for both [M(III)(acac)3] and [M(III)(acac)2(dbm)]. In the case of Delta-[M(III)(acac)3], for example, the order of frequency of two C-O stretches (E and A2 symmetries) is dependent on the kind of a central metal ion as follows: E (-) > A2 (+) for M = Co, Rh, and Ir, while A2 (+) > E (-) for M = Cr and Ru. In the case of Delta-[M(III)(acac)2(dbm)], the order of frequency of three C-O stretches (A, B, and B symmetries) is as follows: A (-) > B (+) > B (+) for Co(III), B (+) > A (-) > B (-) for Cr(III), and A (-) > B (+) > B (-) for Ru(III). These results imply that the energy levels of C-O stretches are delicately affected by the kind of central metal ion. Since such detailed information is not obtained from the IR spectra alone, the VCD spectrum can probe the effect of the central metal ion on interligand cooperative vibration modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号