首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
The dinuclear gold complexes [{Au(PPh 3)} 2(mu- dmid)] ( 1) ( dmid = 1,3-dithiole-2-one-4,5-dithiolate) and [{Au(PPh 3)} 2(mu- dddt)] ( 2) ( dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) were synthesized and characterized by X-ray crystallography. Both complexes exhibit intramolecular aurophilic interactions with Au...Au distances of 3.1984(10) A for 1 and 3.1295(11) A for 2. A self-assembly reaction between 4,5-bis(2-hydroxyethylthio)-1,3-dithiole-2-thione ( (HOCH 2 CH 2 ) 2 dmit) and [AuCl(tht)] affords the complex [AuCl{ (HOCH 2 CH 2 ) 2 dmit}] 2 ( 4), which possesses an antiparallel dimeric arrangement resulting from a short aurophilic contact of 3.078(6) A. This motif is extended into two dimensions due to intra- and intermolecular hydrogen bonds via the hydroxyethyl groups, giving rise to a supramolecular network. Three compounds were investigated for their rich photophysical properties at 298 and 77 K in 2-MeTHF and in the solid state; [Au 2(mu- dmid)(PPh 3) 2] ( 1), [Au 2(mu- dddt)(PPh 3) 2] ( 2), and [AuCl{( HOCH 2 CH 2 ) 2 dmit}] ( 4). 1 exhibits relatively long-lived LMCT (ligand-to-metal charge transfer) emissions at 298 K in solution (370 nm; tau e approximately 17 ns, where M is a single gold not interacting with the other gold atom; i.e., the fluxional C-SAuPPh 3 units are away from each other) and in the solid state (410 nm; tau e approximately 70 mus). At 77 K, a new emission band is observed at 685 nm (tau e = 132 mus) and assigned to a LMCT emission where M is representative for two gold atoms interacting together consistent with the presence of Au...Au contacts as found in the crystal structure. In solution at 77 K, the LMCT emission is also red-shifted to 550 nm (tau e approximately 139 mus). It is believed to be associated to a given rotamer. 2 also exhibits LMCT emissions at 380 nm at 298 K in solution and at 470 nm in the solid state. 4 exhibits X/MLCT emission (halide/metal to ligand charge transfer) where M is a dimer in the solid state with obvious Au...Au interactions, resulting in red-shifted emission band, and is a monomer in solution in the 10 (-5) M concentration (i.e., no Au...Au interactions) resulting in blue-shifted luminescence. Both fluorescence and phosphorescence are observed for 4.  相似文献   

2.
A simple convergent synthetic approach has been developed for the synthesis of iridium(III)-cored dendrimers with carbazole peripherally functionalized beta-diketonato dendrons. The zeroth- to third-generation green-emitting dendrimers were synthesized by reacting the corresponding beta-diketonato dendrons with iridium(III) dimer under mild conditions with good yields, respectively. This approach proved to be modular, and could be used to prepare blue-green-emitting and red-emitting dendrimers with the same beta-diketonato dendrons only by using different cyclometallating ligands. The resulting dendritic ligands and iridium(III)-cored dendrimers were well characterized. Their photoluminescent properties both in solution and in the solid state were tested. It was found that all the dendrimers retained the photophysical properties of the corresponding small analogues with high emission quantum yields (0.06-0.30). Preliminary results indicated that these dendrimers functionalized carbazole units exhibited distinct light-harvesting potential, resulting in a strong intense emission from the iridium core of the dendrimers.  相似文献   

3.
Pyridine Adducts of the Gold Halides. 2. Synthesis, Properties, and Crystal Structure of AuCl · NC5H5 and AuI · NC5H5 AuCl · py is formed by the reaction of AuCl · S(CH2C6H5)2 with pyridine in absolute Ethanol. AuI · py can be obtained from AuI and pyridine in toluene. Both compounds are sensitive to light and thermically instable. AuI · py decomposes already above ?30°C. AuCl · py crystallizes monoclinic with 16 formula units in the space group C2/c, AuI · py is orthorhombic with the space group Pnnm and 8 formula units per unit cell. The structures of the adducts are built up by linear Au(py)2 and AuX2 groups, which are linked together to tetranuclear, chainlike complexes AuX2? Au(py)2? Au(py)2? AuX2 by weak gold-gold bonds. (AuI · py)4 forms a linear Au4 chain and possesses nearly the symmetry D2h. The shortest Au-Au distance being 299.0 pm. In the centrosymmetrical (AuCl · py)4 an Au4-zig-zag chain with Au? Au distances of 324.9 and 341.6 pm is observed. The gold-ligand bond lengths are: AuCl · py: Au? Cl = 228 pm, Au? N = 209 pm; AuI · py: Au? I = 254.4, Au? N = 202 pm. The IR spectra and the luminescence properties are discussed.  相似文献   

4.
The complex [Ru(tpy)(CO)(2)TFA]+[PF(6)]- (where tpy = 2,2':6',2' '-terpyridine and TFA = CF(3)CO(2)-) (1) has been synthesized and fully characterized spectroscopically. The X-ray structure of the complex has been determined. The photopysical properties of the ruthenium complex and the free ligand tpy have been investigated at room temperature and at 77 K in acetonitrile solution and in the solid state. Their electronic spectra are highly influenced by intermolecular stacking interactions, both in solution and in the solid state. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed to characterize the electronic structure and the excited states of [Ru(tpy)(CO)(2)TFA]+[PF(6)]- and tpy. TDDFT calculations on three different conformations of free ligand have been performed as well. Absorption and emission spectra of tpy have been studied at different temperatures and concentrations in order to have a better understanding of this ruthenium derivative's properties. The absorption spectrum of 1 is characterized by metal-perturbed ligand-centered (LC) bands in the UV region. No metal-to-ligand charge transfer (MLCT) bands are observed in the visible for the complex. Only at high concentrations (10(-4) M) does a very weak band appear at 470 nm. At 77 K and low concentrations, solutions of 1 exhibit a major 3LC emission band centered at 468 nm (21.4 x 10(-3) cm(-1)). When the concentration of the complex is increased, an unstructured narrow emission at 603 nm (16.6 x 10(-3) cm(-1)), with a lifetime of 10 micros, dominates the emission spectrum in glassy acetonitrile. This emission originates from a pi-pi stacked dimeric (or oligomeric) species. TDDFT calculations performed on a tail-to-tail dimer structure, similar to that seen in the solid state, ascribe the transition to a triplet excited state, where intermolecular metal (d) --> ligand (pi*, polypyridine) charge transfer occurs. A good estimate of the transition energy is also obtained (623 nm, 1.94 eV).  相似文献   

5.
The stability of gold iodides in the oxidation state +I and +III is investigated at the ab initio and density functional level using relativistic and nonrelativistic energy-adjusted pseudopotentials for gold and iodine. The calculations reveal that relativistic effects stabilize the higher oxidation state of gold as expected, that is Au2I6 is thermodynamically stable at the relativistic level, whilst at the nonrelativistic level the complex of two iodine molecules weakly bound to both gold atoms in Au2I2 is energetically preferred. The rather low stability of AuI3 with respect to dissociation into AuI and I2 will make it difficult to isolate this species in the solid state as (possibly) Au2I6 or detect it by matrix-isolation techniques. The monomer AuI3 is Jahn-Teller distorted from the ideal trigonal planar (D3h) form, but adopts a Y-shaped structure (in contrast to AuF3 and AuCl3), and in the nonrelativistic case can be described as I2 weakly bound to AuI. Relativistic effects turn AuI3 from a static Jahn-Teller system to a dynamic one. For the yet undetected gas-phase species AuI accurate coupled-cluster calculations for the potential energy curve are used to predict vibrational-rotational constants. Solid-state density functional calculations are performed for AuI and Au2I6 in order to predict cohesive energies.  相似文献   

6.
We have synthesized a series of trinuclear gold(I) complexes, namely, [Au3(mu-dpmp)(S2CNR2)nCl3-n] (n = 0-3; R = Me, CH2Ph), [Au3(mu-dpmp)(mu-S2CNR2)Cl](CF3SO3) (R = Me, CH2Ph), and [Au3(mu-dpmp)(mu-S2CNMe2)(C6F5)]X (X = Cl, CF3SO3), containing the triphosphine dpmp [bis(diphenylphosphinomethyl)phenylphosphine] and varying amounts of dithiocarbamate. NMR experiments show fluxional behavior in solution for most of these derivatives because several arrangements of the ligands are possible. The crystal structure of [(mu-dpmp)(AuCl)3] has been determined by X-ray diffraction studies; the molecule displays mirror symmetry and involves an angular arrangement of the gold atoms [Au-Au-Au 119.603(14) degrees, Au-Au 3.3709(4) A]. We have studied the optical properties of these derivatives in the solid state, finding a red shift as a function of the dithiocarbamate number and, for some derivatives, wavelength-dependent emission spectra at low temperature.  相似文献   

7.
The preparations of two new phosphinothiophene ligands, 3,3'-bis(diphenylphosphino)-2,2'-bithiophene (dppbt; 1) and 3,3' "-dihexyl-3',3' '-bis(diphenylphosphino)-2,5':2',2' ':5' ',2' "-quaterthiophene (hdppqt; 2) are reported. Oxidation of 1 gives 3,3'-bis(diphenylphosphine oxide)-2,2'-bithiophene (3), and the crystal structure of this compound was determined. Pd(II) and Au(I) complexes of these ligands have been synthesized and characterized. Crystal structures of [(dppbt)PdCl(2)] (1-Pd), [(hdppqt)PdCl(2)] (2-Pd), [(dppbt)(AuCl)(2)] (1-Au), and [(hdppqt)(AuCl)(2)] (2-Au) were obtained. [(dppbt)(AuCl)(2)] crystallized in two solid-state forms; crystals grown from CH(2)Cl(2)/Et(2)O show a gold-gold interaction of 3.3221(4) A, but from CH(2)Cl(2)/toluene, the molecule crystallizes as a toluene adduct (1-Au-tol) and does not show any gold-gold interaction. All the complexes were characterized via UV-vis spectroscopy and cyclic voltammetry, and the effect of the metal on the energy of the pi-pi transition and oxidation potential was determined. These data are correlated to the interannular torsion angles in the oligothienyl groups from the crystal structure studies.  相似文献   

8.
A crown ether isocyanide CNR (R = benzo-15-crown-5) has been synthesized by dehydration of the corresponding formamide. Substitution reactions with the appropriate gold(I) precursors afford the luminescent mononuclear derivatives [AuX(CNR)] (X = Cl, C 6F 5, Br, I), [Au(C 6F 4OCH 2C 6H 4OC nH 2 n+1 - p)(CNR)] ( n = 4, 8, 10, 12), and [Au(C 6F 4OCH 2C 6H 2-3,4,5-(OC n H 2 n+1 ) 3(CNR)] ( n = 4, 8, 12). X-ray diffraction studies of [AuCl(CNR)] show the molecules associated in a tetranuclear manner with an antiparallel orientation and gold-gold distances of 3.420 and 3.427 A (Au...Au...Au angles are 121.2 degrees ). These tetranuclear units generate infinite zigzag chains through longer Au...Au distances of 3.746 A and weak C-H...O nonclassic interactions. Nucleophilic attack to the coordinated isocyanide in [AuCl(CNR)] by methanol or a primary amine produces the carbene derivatives [AuCl{C((NHR)(OMe)}] and [AuCl{C(NHR')(NHR)}] (R' = Me, n-Bu). The ether crown in these complexes is able to coordinate sodium from NaClO 4, affording the corresponding bimetallic complexes (Na/Au = 1:1). The derivatives containing one alkoxy chain are liquid crystals, displaying a smectic C mesophase (for n > 4), whereas the trialkoxy derivatives display unidentified or smectic C mesophases, depending on the alkyl chain length. After complexation of sodium salts, the mesogenic behavior is lost. All of the derivatives are luminescent at room temperature in the solid state with emission maxima in the range 405-550 nm; they emit at 77 K from 410 to 572 nm. Only the ligand and the fluoroaryl complexes emit in solution at room temperature, but all of the compounds are luminescent at 77 K. Very interestingly, some fluoroaryl derivatives with alkoxy chains are luminescent not only in the solid, and in solution, but also in the mesophase, and in the isotropic liquid at moderate temperatures. These are the first metal complexes ever reported to show luminescence in the isotropic liquid state.  相似文献   

9.
Iridium(III) complexes with intense phosphorescence in solution have been widely applied in organic light-emitting diodes, chemosensors and bioimaging. However, little attention has been paid to iridium(III) complexes showing weak phosphorescence in solution and enhanced phosphorescence emission in the solid state (EPESS). In the present study, two β-diketonate ligands with different degrees of conjugation, 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HL1) and 1-phenyl-3-methyl-4-phenylacetyl-5-pyrazolone (HL2), have been synthesized to be used as ancillary ligands for two iridium(III) complexes, Ir(ppy)(2)(L1) and Ir(ppy)(2)(L2) (Hppy = 2-phenylpyridine). The two complexes have been characterized by single-crystal X-ray crystallography, (1)H NMR and elemental analysis. Interestingly, Ir(ppy)(2)(L1) is EPESS-active whereas Ir(ppy)(2)(L2) exhibits moderately intense emission both in solution and as a neat film, indicating that the degree of conjugation of the β-diketone ligands determines the EPESS-activity. The single-crystal X-ray analysis has indicated that there are π-π interactions between the adjacent ppy ligands in Ir(ppy)(2)(L1) but not in Ir(ppy)(2)(L2). Finally, EPESS-active Ir(ppy)(2)(L1) has been successfully embedded in polymer nanoparticles and used as a luminescent label in bioimaging.  相似文献   

10.
The Au(I) and Ag(I) closed-shell metal dimers of 2-(diphenylphosphino)-1-methylimidazole, dpim, were investigated. dpim formed the discreet binuclear species [Ag2(dpim)2(CH3CN)2](2+) (1) when reacted with appropriate Ag(I) salts. Likewise, [Au2(dpim)2](2+) (3) and [AuAg(dpim)3](2+) (4) were produced via reactions with (tht)AuCl, tht is tetrahydrothiophene, and Ag(I). Compound 3 exhibits an intense blue luminescence (lambdamax=483 nm) in the solid state. However, upon initial formation of 3, a small impurity of Cl- was present giving rise to an orange emission (lambdamax=548 nm). Attempts to form [Au2(dpim)2]Cl2 yielded only (dpim)AuCl (2), which is not visibly emissive. The rare three-coordinate heterobimetallic complex [AuAg(dpim)3](2+) (4) exhibits intense luminescence in the solid-state resembling that of 3. The crystal structures of 1-4 were determined, revealing strong intramolecular aurophilic and argentophilic interactions in the dimeric compounds. Compound 1 has an Ag(I)-Ag(I) separation of 2.9932(9) A, while compound 3 has a Au(I)-Au(I) separation of 2.8174(10) A. Compound 4 represents the first example of a three-coordinate Au(I)-Ag(I) dimer and has a metal-metal separation of 2.8635(15) A. The linear Au(I) monomer, 2, has no intermolecular Au(I)-Au(I) interactions, with the closest separation greater than 6.8 A.  相似文献   

11.
The equilibrium and structure of the complex formed by Al(III) and ethylenediamine-N,N'-bis(3-hydroxy-2-propionate) (EDBHP2-) have been studied using pH-potentiometry, 1H and 27Al NMR, ESI MS and single crystal X-ray diffraction methods. The EDBHP ligand is a strong Al-binder in aqueous solution for pH between 4 and 8 and for c(Al) = c(EDBHP)> or = 0.1 mmol dm(-3). The dominating complex identified by ESI MS and potentiometry is a neutral dimer, Al2L2(OH)2, with logbeta(22-2) = 14.16 +/- 0.03. In the solid Al2(EDBHP)2(OH)2.2H2O the Al(III) ions are connected through a double hydroxo bridge. Both four-dentate organic ligands are coordinated terminally through two carboxylate groups and two N-donors forming three five-membered chelate rings. The hydroxyl groups of the ligand EDBHP remain protonated and are not coordinated to the aluminium ions. The structure and composition of the dimer are very likely the same in solution and the solid state.  相似文献   

12.
The ligands HN(CH2-2-C5H4N)2, BPMA, and PhCH2N(CH2-2-C5H4N)2, BBPMA, react with Na[AuCl4] to give the cationic complexes [AuCl(BPMA-H)]+ and [AuCl(BBPMA)]2+, respectively. The amido complex [AuCl(BPMA-H)]+ undergoes easy inversion at the amido nitrogen atom and can be reversibly protonated by triflic acid to give [AuCl(BPMA)]2+. The complex [AuCl(BBPMA)]2+ is easily decomposed in aqueous solution by cleavage of a carbon-nitrogen bond or, in dilute HCl solution, by protonation of the ligand to give [BBPMAH2]Cl[AuCl4] The complexes [BBPMAH2]Cl[AuCl4] and [BBPMAH2]Cl[AuCl2] can be formed by direct reaction of BBPMA with H[AuCl4]. Unusual forms of gold(III)...gold(III) and gold(III)...gold(I) aurophilic bonding are observed in the salts [AuCl(BPMA-H)][PF6] and [AuCl(BPMA-H)][AuCl2], respectively. The first comparison of the structures of gold(III) amine and amido complexes, in the cations [AuCl(BPMA-H)]+ and [AuCl(BPMA)]2+, indicates that there is little ppi-dpi bonding in the amido-gold bond and that the amide exerts a stronger trans influence than the amine group.  相似文献   

13.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

14.
Triflate salts of three (Pt(pip2NCN))2(mu-L)2+ (pip2NCNH = 1,3-bis(piperidylmethyl)benzene) dimers bridged by a series of nitrogen-donor ligands (L = pyrazine (pyz), 1,2-bis(4-pyridyl)ethane (bpa), trans-1,2-bis(4-pyridyl)ethylene (bpe)) are reported. These complexes have been fully characterized by 1H NMR spectroscopy and elemental analysis. The X-ray crystal structures of [(Pt(pip2NCN))2(mu-pyz)](CF3SO3)2 and [(Pt(pip2NCN))2(mu-bpe)](CF3SO3)2 x 2CH2Cl2 are reported. [(Pt(pip2NCN))2(mu-pyz)](CF3SO3)2: triclinic, P, a = 12.5240(5) A, b = 14.1570(6) A, c = 14.2928(6) A, alpha = 106.458(1) degrees , beta = 92.527(1) degrees , gamma = 106.880(1) degrees , V = 2303.46(17) A(3), Z = 2. [(Pt(pip2NCN))2(mu-bpe)](CF3SO3)2 x 2CH2Cl2: monoclinic, P21/c, a = 10.1288(6) A, b = 16.3346(9) A, c = 17.4764(10) A, beta = 90.882(2) degrees , V = 2891.1(3) A3, Z = 2. These structures and solution measurements provide evidence for the strong trans-directing properties of the pip2NCN- ligand. The electronic structures of these complexes and those of the 4,4'-bipyridine (bpy) dimer, (Pt(pip2NCN))2(mu-bpy)2+, also have been investigated by UV-visible absorption and emission spectroscopies, as well as cyclic voltammetry. The accumulated data indicate that variations in the bridging ligands provide remarkable control over the electronic structures and photophysics of these complexes. Notably, the bpa dimer exhibits a broad, low-energy emission from a metal-centered 3LF excited state, whereas the bpe and bpy dimers exhibit structured emission from a lowest pyridyl-centered 3(pi-pi*) excited state. In contrast, the pyz dimer exhibits remarkably intense yellow emission tentatively assigned to a triplet metal-to-ligand charge-transfer excited state.  相似文献   

15.
A series of luminescent cyclometalated platinum(Ⅱ)complexes,(C^N^N)Pt(C≡CR)[HC^N^N=4-(4-tolyl)-6-phenyl-2,2’-bipyridine;R=4-chlorophenyl(1),phenyl(2) and 4-tolyl(3)],were synthesized,and their spectroscopic properties have been examined.These complexes are brightly emissive both in fluid solution and in the solid state,attributed to triplet metal-to-ligand charge transfer(^3MLCT)state.The excited state energy can be tuned by ancillary acetylide ligands.The emission lifetimes in dichloromethand solution at room temperature were up to 1.64 μs and the emission quantum yields were in the range of 0.03-0.15.  相似文献   

16.
Herein, we report two new cationic iridium(III) homodinuclear structures linked through a diyne moiety at the 5-position of the bipyridyl ligand (1,4-di(2,2'-bipyridin-5-yl)buta-1,3-diyne) and compare these to mononuclear model systems bearing a 5-ethynyl-2,2'-bipyridine ligand. Low energy bands observed in the absorption spectra point to charge-transfer transitions for all four complexes, with these bands red-shifted in the case of the two dinuclear complexes. Electrochemical studies show metal-centred oxidation and ligand-centred first reduction potentials. In the case of the dimer bearing 2-phenylpyridine (ppyH) cyclometallating ligands, cyclic voltammetry (CV) measurements reveal two one-electron oxidation waves and a corresponding reduction in the HOMO-LUMO gap (ΔE(red-ox)) compared to a mononuclear system, pointing to a significant electronic coupling between the two iridium(III) metals. The room temperature emission spectrum of this dimer is also bathochromically shifted, corroborating the CV data. In the case of the iridium dimer bearing 2-(2,4-difluorophenyl)-5-methylpyridine (dFMeppy) ligands, only a single one-electron oxidation wave is observed, but with the expected smaller ΔE(red-ox) value, compared to its mononuclear counterpart. The emission spectra at room temperature are generally broad and featureless with only modest quantum efficiencies (Φ(PL) = 1.4-8.4%) in 2-methyltetrahydrofuran (2-MeTHF) solution. All complexes emit at 77 K with lifetimes on the order of 4 μs. A combined density functional theory (DFT) and time-dependent DFT (TDDFT) study reveals that the emission process is best described as a mixed metal-to-ligand/ligand-to-ligand charge transfer (MLCT/LLCT).  相似文献   

17.
A new family of Ru(II) complexes containing the tridentate meridional 2,2':6',2'-terpyridine (trpy) ligand, a C(2)-symmetric didentate chiral oxazolinic ligand 1,2-bis[4'-alkyl-4',5'-dihydro-2'-oxazolyl]benzene (Phbox-R, R = Et or iPr), and a monodentate ligand, of general formula [Ru(Y)(trpy)(Phbox-R)](n+) (Y = Cl, H(2)O, py, MeCN, or 2-OH-py (2-hydroxypyridine)) have been prepared and thoroughly characterized. In the solid state the complexes have been characterized by IR spectroscopy and by X-ray diffraction analysis in two cases. In solution, UV/Vis, cyclic voltammetry (CV), and one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy techniques have been used. We have also performed density functional theory (DFT) calculations with these complexes to interpret and complement experimental results. The oxazolinic ligand Phbox-R exhibits free rotation along the phenyloxazoline axes. Upon coordination this rotation is restricted by an energy barrier of 26.0 kcal mol(-1) for the case of [Ru(trpy)(Phbox-iPr)(MeCN)](2+) thus preventing its potential interconversion. Furthermore due to steric effects the two atropisomers differ in energy by 5.7 kcal mol(-1) and as a consequence only one of them is obtained in the synthesis. Subtle but important structural effects occur upon changing the monodentate ligands that are detected by NMR spectroscopy in solution and interpreted by using their calculated DFT structures.  相似文献   

18.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

19.
Several new organogold(III) derivatives of the type [AuX(2)(damp)] (damp = o-C(6)H(4)CH(2)NMe(2)) have been prepared [X = CN, SCN, dtc, or X(2) = tm; dtc = R(2)NCS(2) (R = Me (dmtc) or Et (detc)); tm = SCH(CO(2))CH(2)CO(2)Na] together with [AuCl(tpca)(damp)]Cl (tpca = o-Ph(2)PC(6)H(4)CO(2)H), [Au(dtc)(damp)]Y (Y = Cl, BPh(4)) and K[Au(CN)(3)(damp)]. The (13)C NMR spectra of these and previous derivatives have been fully assigned. In [Au(dtc)(2)(damp)] and K[Au(CN)(3)(damp)], the damp ligand is coordinated only through carbon, as shown by X-ray crystallography and/or NMR. [Au(detc)(2)(damp)] has space group C2/c, with a = 29.884(4) ?, b = 13.446(2) ?, c = 12.401(2) ?, beta = 99.45(3)(o), V = 4915 ?(3), Z = 8, and R = 0.057 for 1918 reflections. The damp and one detc ligand are monodentate, the other detc is bidentate; in solution, the complex shows dynamic behavior, with the detc ligands appearing equivalent. The crystal structure of [Au(dmtc)(damp)]BPh(4) [Pna2(1), a = 26.149(5) ?, b = 11.250(2) ?, c = 11.921(2) ?, V = 3507 ?(3), Z = 4, R = 0.073, 1772 reflections] shows both ligands to be bidentate in the cation, but the two Au-S distances are nonequivalent. The crystal structure of [Au(tm)(damp)] has also been determined [P2(1)/n, a = 18.267(7) ?, b = 9.618(3) ?, c = 18.938(4) ?, beta = 113.45(3)(o), V = 3053 ?(3), Z = 8, R = 0.079, 1389 reflections]. The tm is bound through sulfur and the carboxyl group which allows five-membered ring formation. In all three structures, the trans-influence of the sigma-bonded aryl group is apparent. [AuCl(2)(damp)] has been tested in vitroagainst a range of microbial strains and several human tumor lines, where it displays differential cytotoxicity similar to that of cisplatin. Against the ZR-75-1 human tumor xenograft, both [AuCl(2)(damp)] and cisplatin showed limited activity.  相似文献   

20.
While several gold(I) complexes of the type (L)AuX (X = Cl, Br) are known to undergo oxidative addition of elemental chlorine and bromine (X2), respectively, to give the corresponding gold(III) complexes (L)AuX3, the addition of iodine to (iodo)gold(I) compounds is strongly ligand-dependent, suggesting a crucial threshold in the oxidation potentials. A systematic investigation of this particular oxidative addition of iodine using a large series of tertiary phosphines as ligands L has shown that both electronic and steric effects influence the course of the reaction. The reactions were followed by 31P NMR spectroscopy and the products crystallized from dichloromethane-pentane solutions. Complexes with small triakylphosphines (PMe3, PEt3) are readily oxidized, while those with more bulky ligands (PiPr3, PtBu3) are not. With L taken from the triarylphosphine series [PPh3, P(2-Tol)3, P(3-Tol3), P(4-Tol)3] no oxidation takes place at all, but mixed alkyl/aryl-phosphines [PMenPh(3-n)] induce oxidation for n = 3 and 2, but not for n = 1 and 0. However, in cases where no oxidation of the gold atoms is observed, the synthons may crystallize as adducts with molecular iodine of the polyiodide type instead, which have an iodine rich stoichiometry. This fact explains inconsistent reports in the literature. The metal atoms in (L)AuI coordination compounds with L representing a tri(heteroaryl)phosphine [P(2-C4H3E)3, E = O, S], a phosphite [P(OR)3] or a trialkenylphosphine [PVi3] are all not subject to oxidative addition of iodine. The dinuclear complex of the ditertiary phosphine Ph2PCH2PPh2, (dppm)(AuI)2, gives an iodine adduct (without oxidation of the metal atoms), but with 1,2-Ph2P(C6H4)PPh2(dppbe) an ionic complex [(dppbe)AuI2]+I3- with a chelated gold(III) centre is obtained. The gold(I) bromide complexes with tertiary phosphines are readily oxidized by bromine to give the corresponding gold(III) tribromide complexes, as demonstrated for (BzMePhP)AuBr and (Ph3P)AuBr. With (dppm)(AuBr)2 the primary product with mixed oxidation states was also isolated: (dppm)AuBr(AuBr3). The crystal structures of the following representative examples and reference compounds have been determined: (Me3P)AuI3, (Me2PhP)AuI3, (iPr3P)AuI.1.5I2, (Ph3P)AuI.I2, [[(2-Tol)3P]AuI]2.I2, [(2-Tol)3P]AuI, (dppm)(AuX)2 (with X = Br, I), (dppm)AuBr(AuBr3) and [(dppbe)AuI2]+I3-. The structures are discussed focusing on the steric effects. It appears that e.g. the reluctance of (Ph3P)AuI to add I2 is an electronic effect, while that of (iPr3P)AuI has its origin in the steric influence of the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号